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Numerical Investigation on Rail Brake Squeal

Ne A HYAFA G
Heehyuk Shin®, Jachyeon Nam’, Sungjin Choi~ and Jaeyoung Kang'

(Received August 21, 2018 ; Revised April 8, 2019 ; Accepted April 8, 2019)

Key Words : Rail Brake(d %= H.#|©]), Brake Squeal(E.#|¢]= 4), Friction Damping(PF2 ©3)

ABSTRACT

In this study, the brake squeal of rail or subway brakes is investigated using the numerical finite ele-
ment method. A complex eigenvalue analysis is applied to determine the squeal modes of the train brake.
Because the geometry of the rail brake pad is relatively large, numerous natural modes of the pad exist,
leading to its instability. Therefore, it is important to model the system damping including friction and
modal damping. The results show that brake squeal noise in the rail is expected to occur at 3000 Hz ~
8000 Hz and the corresponding squeal modes are found to occur owing to mode coupling in the rail pad.
The unstable pad modes are stabilized by the increase in Rayleigh damping.
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Modeling of KDamper for Vibration Isolation
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ABSTRACT

The KDamper is a new passive vibration isolation and damping concept based on the incorporation
of negative stiffness elements. In this study, a mathematical model of the KDamper system is established
and an analysis on the vibration isolation performance of a KDamper system is performed considering
the effect of nonlinear negative stiffness. The results obtained are compared with those obtained using an
existing tuned mass damper system in terms of transfer functions and the magnitude of added mass, which
affects the vibration responses of the systems. Pertinent conclusions on the effectiveness of the KDamper

system are derived.
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Table 1 Material properties of TMD system

Case (ke) o) (N=soe/m)
1 5 5881.8 20.69
2 10 11 534 57.10
3 20 22 189 153.86
4 200 122 450 2314.1

Table 2 Material properties of KDamper system

Case mp kp Cp ky
(kg) (N/m) (N-sec/m) (N/m)
1 5 8736.6 35.95 -2912.2
2 5 11536 47.65 —-5768.1
3 5 16 976 70.83 -11318
4 5 45728 227.3 -40 647
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ABSTRACT

This paper describes an experimental and analytical analysis on structural safety owing to direct

shock waves generated by an underwater explosion in an FRP-type acoustic window of a surface ship.

First, an underwater explosion test in a cylindrical water tank was conducted to determine the impact

response. In order to set the underwater shock test conditions ruled by MIL-S-901D, this study referred

to foreign impact test technical documents BV-043 that define the Keel shock factor and shock profile.

Then, LS-DYNA, a commercial nonlinear analysis tool, was used analyze the responses of the acoustic

window specimens by direct shock waves. The results of the experiment and analysis confirmed that

structural safety could be secured by deriving the stress per direction of the acoustic window specimen

lower than the allowable stress.
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Parameter Value Unit
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Fig. 8 Demonstration of boundary conditions
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ABSTRACT

An experimental study was conducted to accurately measure the absolute nonlinear parameter (8) of
damaged solid samples in a pulse-echo setup; the results are presented in this paper. Artificially aged Al
6061 specimens were used as the damaged specimens. To improve the amplitude of the second harmonic
wave received in the pulse-echo mode with a stress-free boundary to a measurable level, we developed
a dual element transducer in which the transmitter and receiver were separated. To measure absolute f,
the transfer function was determined from the calibration experiment of the receiving transducer, and
diffraction and attenuation corrections were made. The results of f measurement were presented as a
function of the aging time, and the change in f were found to well represent the variation in the micro-
structure of the material owing to the change in precipitate.
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Table 1 Details of heat-treated Al6061 samples

No. Time (min) No. Time (min)
1 20 8 360 (6 hr)
2 40 9 480 (8 hr)
3 60 (1 hr) 10 960 (16 hr)
4 90 (1.5 hr) 11 1440 (24 hr)
5 120 (2 hr) 12 2880 (48 hr)
6 180 (3 hr) 13 5760 (96 hr)
7 240 (4 hr) 14 8640 (144 hr)
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ABSTRACT

In this study, we analyzed the image characteristics of vehicle type and the operating sound quality

by jury testing the operating noise of the power seat slide adjuster for the vehicle. First, the operating

noise for five test power seats was measured and adjectives for subjective sound quality evaluation were

extracted through questionnaires. Next, the images according to vehicle type were examined using the

extracted adjectives. Third, a subjective evaluation of sound quality was performed using a loud speaker.

At this time, the sound quality and the sound image of the operating noise were extracted by examining

the preference, adjective score using the semantic differential, and vehicle matching the sound source.

Thus, it was possible to suggest sound quality characteristics of slide operating noise and improvements

in sound quality according to vehicle type.
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Table 1 Selected emotional adjective pairs

No Adjective pairs No. Adjective pairs
1 Buzzing-rumbling 7 Expensive-cheap
2 | Monotonous-fluctuating | 8 Strong-weak
3 Deep-high 9 Soft-rough
4 Quiet-loud 10 Smooth-sharp
5 Slow-fast 11 | Comfortable-uncomfortable
Fig. 4 Subjective evaluation using loud-speaker 6 Heavy-light 12 Stable-unstable

722 S LA, oA AA 2, Table 1
Q —(‘ﬂ_g_/\]_ /yq.gg 01_9_8]— QU] —‘?Jﬂﬂmg 7@ 24'_1,:_ A

A9 104 Aro &2 Aar HAEXE A2

o 24 ABE] 49 WA S0l B A5 W & e AR, jE 5, ke D7 FREEA A, A
s e, B el Ak A o), o WIS i 1) B A9 X
S Al Hrkh ol9f tlEe] A7te S99 AT 2 W9 BHAYE FUF AF, pe T WAE vt

HPAENA FL o= A AEA 714
st S FUlslglon, o)F Eal 2sao o q, _(Z(Ii]‘k_,uk))/‘] (D

NAE F5E S AR B
sAEke 2 g sl A FRE 7E e A () Xy = x=d, @)
Trans. Korean Soc. Noise Vib. Eng., 29(3) : 318~326, 2019 | 321

3 4 )0l Ash 4L Ea HAAE ] W7k A

42 9} e
oM FF ATE

\'.1

A A3 e

:@]‘:zﬂ— .{[:

A 39 EEskE A

AT, o] 7] 4]



Sung-Yuk Kim et al.; Sensory Evaluation of Sound Quality for Vehicle Power Seat Slide Adjuster

Ly = ()('i,jk_uk)/ak 3)
3. 23 3 24
3.1 24 24
45 FIMA A HEAF e daTd gisk Hrt
SRR AT Aol A B 9ol
A b B4 (analysis of variance; ANOVA)E

u
A Bask ek 4 4 450l B iy
AS Arlste] Ayt 7HS ARGt 1 4
3}, rumbling-buzzing, monotonous-fluctuating, deep-
high, expensive-cheap oA AHAS T3
wojgink mebd, Mg 43S B BHE AP
oAtk 94 2 2~7-4E] 2~ A (Kruskal-Wallis test)

rumbling®l] tf$t M

0:15?(40 L__%o]

AT

B ccw, D_cw, D cew, E ecwe T2 (+) &

H
<5 »)\910134 3] D_cew®} E cwi UIFE9] of

FlllA =2 (

22 84

gogq

o]
=4

—_—1—
=
) ArE
o
=

=
o)
=

ECE
Vg sl et

ol A
A

Gl

1)
=1

1} o
AR —

rulo fu)

O =
T

o,

ol
& 5

ol 3

BeoA g $AH

o]-& ﬁ747<4&£‘ S 9E=0] HF
= olgalglon], 71 Azt S9AM W= Wb A range test)a ] 6’]— AR AAE B oYEY AT
B o U)ot 538 W Sio] 9 A2 WMo
& ]_07]_019_9_5]_0] - z onm = = = o R TR T mTl=E
feld o7t Sas A, 17 2 ao;} 0, Table 3 veRSACh 4 714
HoRe B fd, S0 Wes gege 0l e S HEAAT T E 7T T
3 oA N T 1o &gl o900
Fig. 5¢] 1|2 ZPAsle] BA81h ¢4 A cwet b S HAETl A T £k S92 A cows
A cew? 749 strong-weak, heavy-light, rumbling-
buzzing FEL A9 Ur]x] RN BE (o) A Table2 ANOVA of preference score
o GFE 0] ATk ol e e &) A Sumof | g | Meam | | g
- squares square
AL G w0 B AORA 15§ — . :
- - cetween
Zeols _ﬁ_zl-_%l— 2= /\)\)\}\E}’ groups 170.006 9 18.890 | 29.061 | 0.000
w2 A o 0A Alo 9 =] &l .
C cws B cwe] 4 058 ~04d Alolol ¢ ]‘f ;Xr/(l)tL}llrljrsl 298.994 | 460 | 0.650 ) )
aL slslen, E cows —0.5% ~+0.5% Aol 9]
o2 Hyt e g 2 SYELS &+ Total 469.000 | 469 - - -
AT} C cewt rough, strong, heavy, loud, deep,
Table 3 Homogeneous subsets of preference score
oA_cw OA_cow 4 B_cw » B_cew %C_cw 0C_coew +D_cw —D_cew —E_cw o E_cew b : Ioh
Subset for alpha =0.05
Stable o x P ——>m=0.0=1|Unstable SS(?;lrr:i 1 5 P 3 Grade N
Comfortable a <> X 1 i ——>m=0:0-HU
Smooth 0o S Y e o ~—>m=0.0=1 Sharp A7CCW 114 (A) 47
Soft d o X 440 ~—>m=0.0=1 Rough AicW 105 (A) 47
Strong OXS Ho00 =% ——>m=0.0-1 Weak C7CW 0.15 (B) 47
Expensive & X Qe Q3 > ~—»m=0.0=1|Cheap
: B cw 0.02 (B) 47
Heavy oo ¥ & ok~ m=0.0-1|Light
Slow e oo A Wy | E_ccw 0.00 B) 47
Quie o x Gk e menaed Low Duncan| C_ccw 032 | © | 47
Deep TR o P mstestHigh B_ccw 042 | (O 47
Monotonous &L xor ot - F ~—>m=0.c-1 Fluctuating
. : , D_cw 049 | (C) 47
Rumbling o o 40 === me0.0-1{Buzzing
‘ ‘ ‘ i | E cw 055 | (©) 47
-15 -1 -0.5 Z_socore 05 1 15 D cow 058 | (© 47
Fig. 5 Mean score of jury testing Sig. 0.17 | 042 | 059

322 | Trans. Korean Soc. Noise Vib. Eng., 29(3) : 318~326, 2019




Sung-Yuk Kim et al.; Sensory Evaluation of Sound Quality for Vehicle Power Seat Slide Adjuster

A cw2 YEPESH, C cw, B cw, E cew’ B 53,
C_ccw, B cew, D _cw, E_cw D cew’} C 552
THEAY. 53] DAFEY HF- cw9 cew BT Co
WoE ERHOREA MY B 5& FAE AU

HU

3.2 XF o[o|X|E HtHE 22 =4
Fig. 62 251 oju]x] A} Axjo] gk Aq+3}
HAS AR dolelE wxl £A48 Aajo|r} Ate]

749~ quiet, expensive, soft, comfortable, stable, SUV

+ heavy$} strong, -9+ fast FEoA 5 80 %
ool ANEE . %, RS nFLEE ol
A, SUVE 95421 °]‘3]XL Fo= 29 Tgk o]m|A|
Us o Aslen, o5 Fal 7 Ao AlEe] o
& A 549 F ek 7*1]"]@' T 9\)\93\‘:}

o 1>
gQ
o
_>‘i
:[o
il
é

ﬁ
X,
oA
EL
_\LL

13 15715 A9

o s
wxp A

].

t

M ol
o 3m

ofN

Ny

e

o)

o g oX

o
D
2

pN

o

7*‘4015} *d Fig %
o] Az} Oigfﬂt A&
d Suvel D 2459 s
ASB, C AHE)e ARERTE Wes
o 5, Algdd ARSE
T Ao olmA|gke vk et 2538 74
Aoz ot & o AEsld dy)
913l Fig. 89 1EjZollA] A, diy At
215)e] 739t Al HEE 39 %, 3 Al (B,C

ni?:
&

juics
ox Mo [
>,

ne

> td
R yo T
o o 32
‘“ﬁﬁu%

Roge

>

m

n
o
R
of\
=
)
(R

so 2 30 oy

rulru
et
ro
_O|L
m e xR oft O

>

A8yl B FF A AEE 30 %= 7HE A W
Rumbling _=Sedan

Unstable 100--7--

Uncomfonable

ngh ~~" Comfortable

F]uctuan ng

Buzzing

Fig. 6 Cross tabulation analysis for car image

Epston, o= Wiy Aldat T8 Aol 2E 5ol
T omA7E & Rgele Ao setH itk
By o SUV(D A8)9 29 2F/F 909 4
o] AEEC] 27 %, 23 %, 13 %o, 28/F5/)
SUVZ} 242t 4%, 2%, 1%
Suvel thgh o7} A8 wdEA] F3h A
& Sloith

m o R e ou X g whg a9l $AE 9]
3l Fig. 6914 80 % o]’&o] AeES Bl FE8AF &
EO] L‘E?‘SPE] ﬁ_g_}\]. M]'./] _'__—r FAZ=E W 3
At} Table 4= 8¢ BEA T} Alge EAo|
7 el A0, KMO9} Bartlett? g, Cronbach
ol A4S B 99 BA o] gy} AFEE 3}
wadeh 1 A, Agke] o)X e VeEhhE g
S Suve tigk gEEo] zkzkeo] ﬁ‘ﬂ&i %)
T Ag I & gdlon,

Wi
Al

ot L

ED)
)
i <
o
[ied
38
i)
AN

tlo

¢

90 m Sedan
80 - m SUV
uRV
70 Truck
= Coupe
= 60 m Hatch back
x
2 m Light car
250
=
E
=40
5]
=
=30
20
10
0

Large SUV ~ Medium sedan
Test Model

Large sedan

Fig. 7 Vehicle type that match sound sources 1

45

® Sedan
® Small sedan

40

M Medium sedan
Large sedan

e mSUV

= Small SUV

B Medium SUV

| Large SUV

®RV

B Truck

)
[y
T

3
(=]
T

[
W

= Coupe
 Hatch back
= Light car

3
(=}

Frequency [%]

—
w

10

Large SUV  Medium sedan
Test Model

Large sedan

Fig. 8 Vehicle type that match sound sources 2

Trans. Korean Soc. Noise Vib. Eng., 29(3) : 318~326, 2019 ‘323



Sung-Yuk Kim et al.;

Sensory Evaluation of Sound Quality for Vehicle Power Seat Slide Adjuster

Table 4 Factor analysis and reliability statistics results

Factor . .| Rotated component | cronbach’s
Adjective pair
name 1 P alpha
Comfortable-
uncomfortable 0.899 0.185
Factor 1 Soft-rough 0.885 -0.062 0,928
(comfort) | Stable-unstable | 0.856 0.241 '
Quiet-loud 0.855 0.134
Expensive-cheap| 0.830 0.342
Heavy-light 0.105 0.893
0.745
Factor2 | Strong-weak 0.177 0.860
(dynamic) Total 4172 | 1383
% of variance | 59.596 19.758
Kaiser-Meyer-Olkin measure of
; 0.854
sampling adequacy
Approx. chi-square | 2212.326
Bartlett’s test of sphericity df 21
Sig. 0.000
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Development of Structural Displacement Finite Element Codes
Based on Physical Coordinates and High Performance
Computing Methods Including PARDISO, PCG, GMRES
and MATLAB or OCTAVE Intrinsic Operator ‘\’

224 #F37F 72 " #3keh = 9 PARDISO, PCG, GMRES 9}
MATLAB % OCTAVE &4t o & ¥dste ofg] s AR A

Seok-Tae Park'
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Key Words : Analytical Integration(3141%] &), CG(Conjugate Gradient, Zd| 7] 7|H), Direct Solver(213 aIH),
GMRES(Generalized Minimal RESidual, ¥1Fsbe #H4A ZH2H), FGMRES(Flexible Generalized Minimal
RESidual, 13 dukalel 24 AA9), Tterative Solver(¥H3 3%), Kirchhoff-Love Plate(7] 23] & =-
2B H3), Krylov Subspace Method(ZHEZX F F7F ¥) MATLAB or OCTAVE Intrinsic Operator
VOERER T ZERE A dAkAL ), MGMRES(Multiple(Restarted) Generalized Minimal RESidual,
% duksly #AZA), Mindlin-Reissner Plate(FE%-2Fo]=1 3, PARDISO(PARallel Direct
Sparse sOlver, B2 27 3|4} 3H), PCG(Preconditioned Conjugate Gradient, X127 <& Az 7]&7]H),
Physical Coordinates Based FEM(&2]% 3% 7|1F #-3t8 AW, Sparse Matrix Solver(3]™-a & 3H)

ABSTRACT

This paper presents physical coordinate-based 3-node triangular, 4-node rectangular, and 4-node quadri-
lateral FE codes on the Kirchhoff thin plate theory. Isoparametric 4-node quadrilateral and 4-node plate
shell FE codes based on natural coordinates are also presented. The calculation time needed to solve a
system equation was compared using direct, iterative, and full matrix and sparse matrix solvers including
Gauss elimination method, CG, DGESV, DSGESV, SOR, PCG, GMRES, FGMRES, MGMRES, PARDISO,
etc. The full matrix and the sparse matrix were applied to compare the computing time of the system equation
using OCTAVE or the MATLAB intrinsic operator ‘\’. The computation times for PCG methods using
four types of preconditioners were also compared. The computation time of the finite element method is
compared with that of the PCG method after processing the system matrix with the full matrix and sparse
matrix forms. We showed that PARDISO and sparse MATLAB or OCTAVE operator ‘\’ could be useful

and effective methods for conducting large-scale finite element analyses using personal computers.
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1. History and Research Motivation
of Thin Plate Analysis

In this paper, the development of structural dis-
placement finite element method (FEM) codes and
the computational time comparisons of system equa-
tion using several solvers were described. For the
first topic, we dealt with the Kirchhoff flat plate the-
ory in Section 2, and described the formulations of
the finite element (FE) in Section 3. We verified the
validity of the developed FE codes in Section 4. As a
second theme, in Section 5, we compared the compu-
tation times obtained by various solving methods of
the system equation within structural static displace-
ment FE codes, and proposed an appropriate analy-
sis methods. Acoustic BEM (boundary element meth-
od) code and structural vibration FEM code were need-
ed to perform structural-acoustical coupling analysis
by developing high-speed computations of large de-
grees of freedom without using commercial software.

The reason for developing the structural displace-
ment analysis FEM program was that Holmstrdm™
omitted the FEM program for vibration analysis with
blackbox in the program presented in the vibration-
acoustic coupled analysis paper. (1) In this paper, the
first developed FEM codes were the same as rec-
tangular FE codes presented by Irvine®™. It was a
physical coordinate based rectangular FE codes that
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could be applied only when the four sides were all
parallel to the = or y axis®, developed according to
the assumptions used in the Kirchhoff plate theory
(thin plate theory). (2) Semie suggested a physical co-
ordinate based 3-node triangular plate FE codes that
could model arbitrary two-dimensional shapes and
analyzed the displacement of a thin plate®. He inves-
tigated two cases where four sides of the square plate
were simply supported or fixed (clamped). However,
the analytical results were significantly deviated from
the values of the commercial software ANSYS® and
Kirchhoff thin plate’s theory. In this paper, we devel-
oped a physical coordinate based triangular FE codes
according to the methodology suggested by Semie,
and found that there would be some errors in the FE
codes presented by Semie. (3) We have also developed
a physical coordinate based 4-node quadrilateral FE
codes that can model any two-dimensional shape in
order to complement the disadvantages of FEM us-
ing rectangular FEs parallel to the z- or y-axis. (4)
On the other hand, the above three FE codes were
assumed to ignore transverse shear strain effects be-
cause of the Kirchhoff thin plate theory. Ferreira pro-
posed an isoparametric quadrilateral FE codes based
on the Mindlin-Reissner plate theory, which consid-
ered transverse shear deformation®. We also devel-
oped the natural coordinates based isoparametric
quadrilateral FE codes which were based on the thick

plate theory, and compared with the displacement
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analysis results of the Kirchhoff plate theory. (5) The
displacement analysis FEM codes based on the
Kirchhoff plate and Mindlin-Reissner plate theories
were able to only analyze the z-direction displace-
ment in the normal direction of the 2-D coplanar
plate. Kwon proposed a 3-dimensional isoparametric
plate shell FE codes for static displacement analysis
in 3-D space using MATLAB® language”.

We have translated this codes into FORTRAN ones to
improve memory scalability and computational speed.
Consequently, four 2-D coplanar structural FE codes
and one 3-D structural displacement FE codes were
described in this paper. The differences between
Kirchhoff theory, Mindlin-Reissner plate theory and
three dimensional plate shell element were described
for two dimensional plate. In order to evaluate the
performance of FEM system equation, which was a
system matrix equation Az= b, the computation times
of MATLAB®, OCTAVE®" and FORTRAN codes
were compared in both direct and iterative methods.
We also compared the computation time for full ma-
trix solvers that processed the coefficient matrix A
of system equation as a full matrix form and sparse
matrix solvers for the sparse matrix one. The com-
putation times for PCG methods using four kinds of
preconditioners were also compared in sparse system
matrix. The finite element method was compared
with the computation time of PCG method after pro-
cessing the system matrix with full matrix and sparse

matrix form, respectively.

2. Kirchhoff Thin Plate Theory

According to Semie®, in 1776 Euler first attempt-
ed to solve the free vibration problem of the plate.
Germain developed differential equations for flat
plates without considering warping term, and Lagrange
proposed general plate differential equations by con-
sidering warping term. Poisson proposed the Germain-
Lagrange plate equation assuming a constant flexural
rigidity for the plate subjected to static loads. Navier
has established a flat bending theory that uses flexu-

ral rigidity as a function of plate thickness and pro-

posed a method to obtain exact solution using Fourier
trigonometric series. Kirchhoff proposed the theory
of plate bending using basic assumptions known as
‘Kirchhoff's hypothesis.” Kirchhoff's thin plate’s hy-
pothesis is expressed: the cross sections of the plate
are remained as straight and unstretched and also
normal to midsurface even after the plate is deformed.
That is, 7,:=0, 7,:=0, 0..=0 and &..=0. Let the ref-
erence in the z direction be the middle of the plate
thickness, and the displacements in the z and y di-
rections in the plate u, v respectively, and the dis-

placement in the z direction w (Fig. 1).

ow
=0 =—z— 1
u 20, z o M
ow
U:—Zgy :—Za—y (2)

For inplane strains, strain-displacement relationships:

ou 8w
g ==Y 3)

ox ox

2

ov o w
g, ==y @

oy dy

_ou  ov__ . 8w )

Ty oy ox oroy

The relationship between plane stress and plane
strain for isotropic materials according to Kirchhoff’s
assumptions is as follows. Stress-strain relationships:

E

(el, +’U8y)

(6)

(N

Fig. 1 Slice cut of plate normal to y axis
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Toy = Gy 8)

Where, shear modulus G= Young’s mod-

_ £
2(1+wv)°
ulus E, Poisson’s ratio v

Bending moments” along the =, 3, and zy edge

(Fig. 2):

t/2

7]
M, = / zo,dz = —D( f-ﬁ-v 1;]) ©)
—t/2 ox oY
t/2 2 2
a,= [ zaydz:D(afﬂaf) (10)
' —t/2 oy oz
t/2 2
Mw =/ ZTMdz =—-D(1—v) 0w (11)
B . oxroy
L Bt
Where, bending rigidity of the plate D= ———
12(1—?)
and t is thickness of the plate.
By the moment equilibrium,
0Q, 0Q,
+ 5= 12
oz T oy q=0 (12)
oM, oMy, o 03
o oy %7
oM, oM, 0 (14)
oy ox @ =

Inserting Eq. (9) ~Eq. (11) into Eq. (13) and Eq. (14),

Fig. 2 Free body diagram of the plate element
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a(Eq.(14))

8(Eq.(13
after (Eq-(13)) + +(Eq.(12)):
ox oy
4 4 4
] R R A (15)
oxr ox~ oY oy

This is the governing equation for Kirchhoff thin
plate bending theory with transversely loaded.

2.1 Analytical Solution of Thin Plate
Boundary conditions for a simple supported rec-
tangular plate: width and length of the plate are a

and b, respectively.

7]

W=0, =2=0, at 2=0,a
ox
62

W=0, =0, at y=0, b

9y
Using the infinite double Fourier trigonometric
series satisfying the boundary condition in the meth-
od proposed by Navier®®, out of plate displacement

w(z, y) can be expressed as Eq. (16).

mmy

(z,y)= E E Sln L sin b (16)

For sinusoidal load g,
-y Epmsm T sin (1)

m=1n=1

Where,
4 fo b . mmx nmy
Prn EA Ap(x7y)51n b dl‘dy

(18)

Equation (16) and Eq.(17) can be inserted into
Eq. (15) and solved w(z, y), but Levy® proposed a
simple series method and got the maximum dis-

placement at the center of the square plate (a=b).

,1

19)

l’ll ax

The displacement due to concentrated load P at

the center of the square plate is followed®.

Pa?
=0. 011607

(20)

l’ll ax
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The maximum displacements at the center of the
square plate with respect to the distributed loads po
and concentrated loads P for the fixed boundary con-
ditions are given by Eq. (21) and Eq. (22)®.

4

Py
Wy :0.001260T for p, (30

2

Wy :0.00560% for P 22)

3. Formulations of Various Structural
Displacement Finite Elements

In this paper, three-node triangular, four-node rec-
tangular and quadrilateral FE codes based on phys-
ical coordinates and Kirchhoff thin plate theory were
presented and also natural coordinates based iso-
parametric four-node quadrilateral FE codes accord-
ing to Reissner-Mindlin thick plate theory and 3-D
plate shell FE codes. According to Kirchhoff’s thin
plate theory, the transverse shear strain energy is neg-
ligible compared to the bending energy. Therefore,
the total strain energy of the plate” is as Eq. (23).

=5 o)
:gff (%):(Zf : dzdy
SRV 23)
ol 5
-l ]|
{o}' =0, 0, 7] (24)
et = [es e 7y 25)

Total potential energy /I, potential energy of ex-

ternal forces V'
n=U-Vv (26)

Where, V= / w' fdv

3.1 Triangular Finite Element Based
on Physical Coordinates
Batoz proposed a DKT (discrete Kirchhoff theory)

element®

with the origin of the local coordinate of
the geometric centroid of the triangle. But, in this pa-
per, the origin of the local coordinates was defined
as in Fig. 3. In Fig. 3, let the longest side of the tri-
angular element coincide with the z-axis of the local
coordinates. The local triangle with new coordinate
values was constructed by translational and rotational
movement so that the vertex facing the longest side
was in the first quadrant. FE codes using 9 degrees
of freedom (DOF) triangular element with 3 DOF per
the triangular node were developed. The node num-
bering order was counterclockwise. Local FEs con-
structed from local coordinates were converted to their
original global coordinates by rotational movement.
The global total stiffness matrix was constructed by
assembling each global FEs. W was out of plane
displacement in z coordinate and was expressed by

physical coordinates like as Eq. (27)®.

w(:my, ) —al(t)+ ( )x+a3(t)y+a4(t):p2
as(t)zy +ag(t)y’ +ar(t)2®
+ag(f)(x y+ay?)+ay(t)y’
={4A0)}{2

{A@} = [ay(t) -+ ag(t)]

@7

(28)

(1 2y a® 2y o 2° y+ay '] (29

{7} =

For node i,

Fig.3 Local and global coordinates
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After applying the same processes for node j and

node £,
{w}i = [wz 011 eyz' wj 917 Hz/j Wy, ga:k eg/k} (30)
{w}, = [B1{4} 31
That is,
w; 100 0 0 0 0 0 0 ](a,
0 010 0 0 0 0 0 0 ||,
0 001 0 0 0 0 0 0],
v 1z;0 22 0 0 2 0 o1l?
wj ) 2 Gy
p Lo 01 0 20, 0 0 347 0 0 |la
0;,; 001 0 =z 0 0 If 0 a
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(32)
A} = -1
{4} = [B] ), .
= [CHuw},
Where, [C]=[B]}
Equation (23) can be rewritten as Eq. (34).
D t t
=5 kil || Stay)dedy[CHw},
; (34)
— {w}t K] dw),
Local element stiffness matrix [k].,
(%1, = DLl [[ stay)dzayl €] 69)

S(2,y) g9 = {3 }{ } {y} J}
w2z el
+2(1— {amy }{ 8;81 }

Where, 3=2(1—0)
Analytical area integration (Fig.4) for Sy = 12z,

y=a)/p
ﬂ547dxdy —/ / 12zdxdy
y/

Y/ P

= 2yk(3q2 3qy, +v7) [t — 24}/ p?

(36)
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Fig. 4 Analytical integration

Where, p, =y,/x) py =y / (2, —x,), ¢=—xp,
Global element stiffness matrix [k], was obtained

like as follows.

(K], =[T]"[K],[T] 37
7,0 0
Where, rotation matrix [7’]=|0 7} 0
007,
1 0 0
Ty=1] 0 cos(—¢)—sin(—¢)
0 sin(—¢) cos(—¢)
By variational approaches for Eq. (26),
(k] {w}, ={/}, (38)

Total global stiffness matrix, displacement vector
and force vector were followed, respectively.

(K]=)]1k], (39)

{w} =3 {w), (40)

{Fy=31n, 1)
System equation was expressed as Eq. (42).

(K H{w}={F} 42)

3.2 Rectangular Finite Element Based
on Physical Coordinates
According to Tom Irvine'®, the out of displacement
W can be expressed as physical coordinates as 4
DOF at each of four vertices of a rectangle.

(t)+( (¢ )T+a3(t)y+a4(t).7:2
+a5(f)zy+a6( )y2+a7(t)x3
+a8(f)x y+at( ) JZ

—O—aw( )y +an( )% y+a]2(t)xy3

w(@y,t) =

(43)
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The FE could be obtained in the same way as
Sec. 3.1. For S47 = 12z,

b a
/]547dxdy = / f 12zdedy = 6a%b
oo

Where, ¢ and b was side length of rectangular ele-
ment.

Analytical area integration was simple compared
to triangular FE, but rectangular FE suggested by
Irvine could be applied only if all sides were parallel
to = or y axis. However, in this paper, even though
the local rectangular element was not parallel to the
x or y axis, we have modified the FE codes so that
it could be applicable to any orientation of rectangle
FE by applying the rotational transformation as shown
in Eq. (37).

3.3 Quadrilateral Finite Element Based
on Physical Coordinates

Batoz developed the DKQ (discrete Kirchhoff
quadrilateral) element by extending the DKT concept.
However, the results of the convergence rates during
displacement analysis were not good compared to
McNeal or LORA by Robinson and Haggenmacher!'”.
In this paper, quadrilateral FE were developed by the
same physical coordinate based methodology as the
triangular FE mentioned in Sec. 3.1. The FE formula-
tion process was the same as the triangular FE in Sec.
3.1, but the analytical area integration // S(z,y)dudy
was very lengthy and was obtained using software.

3.4 Isoparametric Quadrilateral Finite Element
(Mindlin—Reissner Thick Plate Theory)
Based on Natural Coordinates

6.711~13) oad

Mindlin-Reissner, Naghdi plate theory
a generalization of the Kirchhoff hypothesis: points of
the plate which are on the normal to the undeformed
middle surface remain on a straight line even after de-
formations are proceeded but, which are not necessarily
normal to the deformed middle surface"”. That means
Yz £ 0, 72 #0, 0,,=0 and &,,=0. Therefore, shear de-
formation term was added to traditional Kirchhoff plate

theory, Eq. (23) as a second term.

1
U:E/Ljat{e}dv-ﬂ-%/“{ac}t{ec}dv (44)
{0-('}t = [7—1"2 T!/Z} (45)
{e = [ ) (46)

Where, « is shear correction factor®, 5/6, {o.} and

{e.} are stress and strain due to shear deformations.

Transverse shear strain-displacement relationship®:

ow ou ow
=—+—=—-+0 47
S ox 0z  ox v “7)
1o 1o o
= oy 9z oy Yy
o= De (49)
0. =D, (50)
1 v 0
_F v 1 0 . GO}
Where, D= = 1—ov |’ DC—[O pe
0 O
2
With the shape function,
4
w = EM(C’n)wz’
i=1
0, = >IN0, (51)
i=1
4
0,=DIN(¢n)o,,
i=1
{e} = —z[BHw}, (52)
{e.} = [B]{w}, (53)
[B] =
aN, aN, AN, N,
0o— 0 0—2 0 0—20 0— 0
ox or ox ox
N, an, N, aN,
o 0 —0 0 —,0 0 —|,0 0 —
oy oy oy oy
o PN 0N 0N, oN, 0N, 0N, 0N, o,
oy o oy ox oy ox oy ox
(54)
B8] =
Ny g ey g P g PNy
oxr oxr oxr oxr
A A R
oy oy oy oy

(55)
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(56)

) (B4 DIB]dAtw),
+ ) /4 ot|B)'D.[B]dAfw), (7

— wlt (K], {w),
[k]c=f—;f4[31ff—; [B)dA -
+/;at[BC}tDC[BC]dA

o= [ ey (59
(k] Aw}, ={f}. (60)

3.5 Plate Shell Finite Element Based
on Natural Coordinates

Kwon proposed MATLAB® FE codes using plate
shell finite element, 5 DOFs per node, which com-
bined membrane element and plate bending element
using natural coordinates based isoparametric ele-
ments”. Since the inplane rotational term was not
included in plate shell element, it left null or zero
values in the stiffness matrix. So-called drilling DOF
incurred singularity in structural stiffness matrix if

all the elements were coplanar’”’

. To solve this prob-
lem, Knight!'® suggested that a very small value be
specified for the stiffness of the drilling DOF so that
the contribution to the strain energy equation from

(. The local stiffness ma-

this term would be zero
trix in the natural local coordinates was transformed
into the global coordinates and assembled to obtain

the total global stiffness matrix.

4, Validation

The FE codes suggested in Section 3 were vali-
dated using a square plate with four sides fixed. The
plate specifications and the analysis conditions used
in the analysis were as followed. Young’s modulus
E=2x10" Pa, Poisson ratio v=0.285, density p=
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7874 kg/m® and width x length, 1 m x 1 m with thick-
ness 0.1 m. A square plate with a uniform distribution
load of 50 000 Pa was modeled on a 10 x 10, 20 x 20,
40 x 40 grids on a flat plate. Theoretical calculations,
results calculated from the Semie model®, ANSYS®
shell 63, ANSYS® shell 163 and LISA"™ software are
shown in Table 1. The results using the five FE codes
suggested in Section 3 are also presented. The displace-
ment at the center of the square plate calculated by
the theoretical formula (Eq. (21)) was —3.47 um. Semie
model using triangular FE showed a displacement of
—4.81 um when modeling a square plate at 100 x 100.
It was 38.6 % error compared with the value predicted
by the theoretical Eq. (21), and it was also reported
that the error was —42.4 % and 384.15 %, respective-
ly, when using ANSYS® shell 63 and ANSYS" shell
163 element (5). However, in Sec. 3.1, the result using
the triangle FE codes formulated by the methodology
proposed by Semie was —3.50 pm, which was within
0.9 % of the theoretical value. The FE codes presented
in Sec. 3.1 ~ Sec. 3.3 which were formulated accord-
ing to the Kirchhoff thin plate theory showed a max-
imum error of 0.9 % with the theoretically predicted
value. Therefore, there would be some errors in the
FE codes programmed by Semie, and it was assured
that the analys using ANSYS®™ software was also
applied incorrectly. Consequently, it showed that the

Table 1 Comparison of displacement at center of square
plate under distributed load 50 000 Pa with fixed
boundary condition by several methods (Unit: um)

Elem x elem 10x10 | 20x20 | 40x40
1 Theory, Eq. (21) -3.47 -3.47 -3.47
2 Semi® - - -4.81
3 ANSYS 63® - - -2.00
4 ANSYS 163% - - -16.80
5 LISA -4.01 -4.02 -4.03
6 Triangular FE -3.65 -3.54 -3.50
7 Rectangular FE -3.56 -3.51 -3.49
8 Quadri. FE -3.56 -3.51 -3.49
9 Mindlin-Reissner -3.74 -3.76 -3.77
10 Plate shell —4.12 —4.13 —4.13
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FEM codes formulated according to the Kirchhoff
thin plate theory were suitable for use. The analysis
result by the commercial software LISA® version
8.1.0 beta version was 16.14 %. In case of Mindlin-
Reissner thick plate theory considering shear defor-
mation, it showed 8.6 % error with Kirchhoff thin
plate theory. On the other hand, 3 dimensional plate
shell FE codes showed 19.02 % error with Kirchhoff
thin plate theory.

5. Comparison of Computation Time
for System Matrix According
to Solving Methods

It can be classified by two regimes to obtain the
solution of the system equation, Az = 5. One is full
matrix solving methods with A (4, j) form of square
coefficient matrix A and the other sparse matrix
solving methods with coefficient matrix A as sparse

form.

5.1 Full Matrix Solving Methods

The FE codes developed in Section 3 initially were
coded in OCTAVE® language because of necessity of
graphic postprocessing in the coding stage. OCTAVE®
intrinsic operator ‘\’ was adopted to obtain the vector
z in the system equation Az =b0. But, it needed a
long computation time, and codes were translated to
FORTRAN language in order to improve its comput-
ing performance. In order to find the solution vector
in the system equation Ax= b, which was the form
[K]{W}={F} used in the structural displacement
FE codes in Section 3, and compare computing perfor-
mance, the following eight full matrix solving meth-
ods including four methods described in reference!'

were examined.

(1) Gauss elimination method with partial pivoting
algorithm, direct solving method.

(2) Successive over-relaxation (SOR(w=1.95)) al-
gorithm, iterative solving method.

(3) Conjugate gradient (CG) Algorithm, iterative

solving methods, tolerance = 10"

(4) Preconditioned conjugate gradient algorithm
with diagonal preconditioner (PCG-D), iterative solv-
ing method, tolerance = 10",

(5) Direct Gauss elimination method with partial
pivoting (DGESV), FORTRAN MKL" library.

(6) Iterative Gauss elimination method with partial
pivoting (DSGESV), FORTRAN MKL" library.

(7) OCTAVE® *\’, full matrix solver (OCT-F).

(8) MATLAB" *\’, full matrix solver (MAT-F).

Methods (1) to (4) showed that the same algo-
rithmic codes were simply translated in OCTAVE®,
MATLAB®, and FORTRAN languages, respectively,
rather than using specialized built-in functions in
each language. There were two classes of iteration
methods"'®. One was stationary iteration methods or
fixed-point iteration methods like as Jacobi, Gauss-
Seidel, SOR and the other was projection methods,
which was called Krylov subspace method, like as
CG, PCG, generalized minimum residual method
(GMRES). Projection methods were required that ap-
proximation solution x extracted from the subspace K
should make residual = b— Az orthogonal to the sub-
space L. In the first stage, the system coefficient ma-
trix A used in the simulation was a symmetric pos-
itive definite (SPD) matrix, a tridiagonal matrix with
a bandwidth of 1+2 X nz, with one diagonal with
four off-diagonal terms added"”. Nx was the distance
between diagonal term and element locations and »
was the size of matrix A.

nr=+/n
Aliyi) =4x (1+nz)?

A(ii+1) = A(i+1,4)= A(i,i + nx)
=Ali+nz,i)=—(1+nz)% i=1,2,..n

The vector b is obtained by assuming z(1:n) =1 in
Az ="b. The personal computer (PC) used was Intel®
Core 17 4790K@4.0 GHz processor, 32 GB RAM, and
operating on Windows 7 64 bit. FORTRAN codes were

compiled using Intel® Parallel Studio XE 2015 MKL
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compiler 64 bit. In the case of 2000 DOF, the calcu-
lation time ratio was 27 883 sec : 144.24 sec : 32.26
sec=864 : 4 : 1 when the Gauss elimination method
(solid line) was excuted with OCTAVE®, MATLAB®,
and FORTRAN language, respectively (Fig. 5). In the
case of the PCG-D algorithm, it showed OCTAVE® :
MATLAB® : FORTRAN =21 436 sec : 70.31 sec : 1.12
sec=19139:63:1. When the Gauss method and the
SOR method were used, the calculation time ratio of
OCTAVE"/MATLAB® was 193 and 197, CG method
and PCG-D was 355 and 305, respectively. That is, it
showed that the computing speed was 193 to 355 times
faster to operate in MATLAB® than in OCTAVE® for
same algorithmic codes. In addition, executing sim-
ilar codes in FORTRAN was 4 to 63 times faster than
running in MATLAB®, and 831 to 2269 times faster
than in OCTAVE" between 200 DOF and 10 000
DOF. The PCG-D method in FORTRAN showed the
fastest calculation time.

Figure 6 showed the computing time when the
operator °\” built in OCTAVE® and MATLAB®, the
FORTRAN MKL library direct solver DGESV and
iterative solver DSGESV were used. The shortest com-
putation time for 2000 DOF was 0.051 sec for the

solid:Gauss, dashed: SOR, dash-dot.CG, dotted: PCG-D

Computing time, sec

—8— OCTAVE

—f— MATLAD
—HB— FORTRAN

10 10*
Degree of Freedom

Fig. 5 Comparison of computing time using full matrix
solvers for OCTAVE®, MATLAB® and FORTRAN
codes for 5 model cases, marker: O: OCTAVE®,
{1 MATLAB®, o: FORTRAN, linestyle: -: Gauss,
- SOR, -.: CG, =: PCG-D, range: 200 DOF ~ 10 000

DOF (Unit: sec)
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direct method DGESV and 21 436 sec (= 10 hours)
for the slowest case, OCTAVE®-PCG-D (marker: blue
o). It showed OCTAVE®-PCG-D : MATLAB®-PCG-D :
FORTRAN-PCG-D : OCTAVE \’ : MATLAB \’ : DGESV
=21436:70.31:1.12:0.637:0.065:0.051 =420 314 :
1379:22:12.5:1.27: 1. In the case of MKL FORTRAN
library, iteration method was faster than direct meth-
od at 5000 DOF or more. In view of above discus-
sions, it showed that the program language and
solving method to be used were very important in
computing time of system equation. The intrinsic oper-
ator \” used in MATLAB® was shown to be an effect-
ive method. Using the MATLAB® °\’ (-4-) showed
1080 times faster than the computing time of the
PCG-D programmed in MATLAB® language(4) in
case of 2000 DOF. For 10 000 DOF system equation,
FORTRAN-PCG-D was 69.3 sec (Fig. 5), DGESV
4.5 sec, OCTAVE® “\’ 104.4 sec, and MATLAB" *\’
3.3 sec (Fig. 6), respectively.

So far we have compared the computation times
for the cases where the coefficient matrix A was ide-
ally diagonally banded SPD matrix. Gauss and SOR
method, which was stationary iteration method with
slow computation speed, were excluded from com-

parison. Using the data obtained from the FEM co-

. OCTAVE-PCG-D, "full matrix ]
21,436 sec )

MATLAB-PCG-D, full matrix ’
703 zec

Computing time, sec

FORTRAN-PCG-D, full matrix Tl
1.1sec -
—B— DSGESV
= —€F -DGESV
10k % —8— OCT-F I
- —f— MAT-F

......
=" @ ocTrCcGD
® wmarrceo
B FOR-PCGD

1lfl3 10
Degree of Freedom
Fig. 6 Comparison of computing time using full matrix
solvers, marker-line: ®: OCTAVE"-PCG-D, O-:
OCTAVE" “\", : MATLAB"-PCG-D, {-: MATLAB"
‘\’, m;: FORTRAN-PCG-D, o-: DSGESV, o--: DGESV,
range: 200 DOF ~ 10 000 DOF (Unit: sec)
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des in Section 3.2, the computational speeds for the
system equations were compared. In the formal FEM,
the stiffness matrix [ K] typically exhibited the char-
acteristics of SPD matrix"®. The stiffness matrix and
the force vector were obtained using FEM codes us-
ing the rectangular FE codes in Sec. 3.2. The square
plate were modeled to 20 x 20, 40 x40, 80 x 80,
100 x 100, 140 x 140 FE meshes, respectively, which
was called Ex1, Ex2, Ex3, Ex4 and Ex5. Since the
DOF per node was 3, each model size was 1323,
5043, 19 683, 30 603, 59 643 DOF, respectively. The
specifications, boundary conditions and force con-
ditions of the square plate were described in Section
4. The stiffness matrices and force vectors were ob-
tained by applying fixed boundary conditions to the
four sides of the square plate. The stiffness matrices
and force vectors for the five data sizes were output
to data files and then used in each solving method
programs. Figure 7 and Fig. 8 showed the stiffness ma-
trices before and after applying the boundary con-
dition to the system equation of the case of square
plate (4 x4) (75 DOF). The modified stiffness matrix
pattern (Fig. 8) was a general matrix form and ob-
tained by applying fixed boundary conditions to the
stiffness matrix pattern in Fig. 7.

Table 2 showed the calculation times obtained us-
ing the following seven solving methods for the five
matrix size models. Methods (1) ~ (4) were compiled
with Intel” Parallel Studio XE 2015 FORTRAN com-
piler. Figure 9 showed the computation time results
for each solver.

(1) CG codes", iterative method.

(2) PCG-D codes"?, diagonal preconditioner, iter-
ative method.

(3) DSGESV, iterative Gauss elimination method
with partial pivoting.

(4) DGESV, direct Gauss elimination method with
partial pivoting.

(5) OCTAVE® operator ‘\’, OCT-F.

(6) MATLAB® operator ‘\", MAT-F.

(7) LISA® software, version 8.1.0 beta version.

0

4ot
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Pattern of stiffness matrix K of 75 x 75 before

applied boundary condition, white part: ‘0’ value

Fig. 7

Degree of freedom

50+
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nr

0 10 20 30 40 s & 70
Degree of freedom
Fig. 8 Pattern of stiffness matrix K of 75 x 75 after
applied boundary condition, white part: ‘0’ value

Table 2 Comparison of computing time using full matrix
solvers for 5 models (Unit: sec)

Ex1 Ex2 Ex3 Ex4 Ex5
DOF
1323 5043 | 19683 | 30603 | 59 643
(1) CG 1.5 133.9 | 5657.6 |13 543.5
(2) PCG-D 0.32 12.06 | 836.8 | 3078.7
(3) DSGESV | 0.11 1.65 55.8 202.0 |31235.7
(4) DGESV | 0.02 0.75 31.5 120.8 | 1218.4
(5) OCTAVE| 0.27 14.84 | 2580.9
(6) MATLAB| 0.06 1.12 47.1 168.2 | 3442.8
(7) LISA - 1.0 13.0 26.0 106.0
"Blank spaces mean omitted because of expecting excessive com-
putin% times.

"LISA®, 4 node quadrilateral element
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In the direct solution method DGESV (o dashed
line), it showed that the calculation time was nearly
proportional to DOF®. In MATLAB® operator ‘\’, it
was 0.065 sec at 1323 DOF and 3443 sec at 59 643
DOF, the computation time was also proportional to
DOF’. In Fig. 6, iterative method DSGESV showed
faster calculation speed than direct method DGESV,
but in Fig. 9, iterative method showed slower calcu-
lation speed. This was because the coefficient matrix
A applied in Fig. 6 was a sparse SPD matrix and the
matrix A used in Fig. 9 was a non-SPD matrix and a
relatively dense matrix. In OCTAVE® and MATLAB®,
the same operator ‘\’ was used. As the DOF increas-
es, the calculation time difference between MATLAB®
and OCTAVE" becomes larger. When calculating the
FE model of 19 683 DOF (Ex3), the computation time
ratio was 55 times as 47 seconds in MATLAB® and
2581 seconds in OCTAVE®. In the case of 59 643 DOF
(Ex5), it was 3443 sec for MATLAB® \" and 1218
sec for DGESV routine. There was a rapid increment
in computing time at 59 643 DOF for DSGESV. The
reason why the computing time using DSGESV, an
iterative method, surged compared with the direct
method DGESV, was that it was caused by a reduc-
tion in efficiency caused by using virtual memory due
to lack of CPU memory. Unlike DGESV, DSGESV, an

Computing time, sec
2

= &= DGESV

—e—OCTF
—— MAT-F
. LISA

10° ”

10
Degree of Freedom
Fig. 9 Comparison of computing time using full matrix
solvers for 7 methods, marker-line: o-: DSGESV,
o--: DGESV, o-.: CG, m==: PCG-D, O-: OCTAVE®™
‘v, - MATLAB® *\", A-: LISA®, range: 1323

DOF ~ 59 643 DOF (Unit: sec)
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iterative method, required additional workspace mem-
ory equal in size to system matrix A. To calculate an
Ex5 model using DSGESV, we needed at least 56
GB of memory, but used PC had hardware specifica-
tions with 32 GB of RAM, so it needed virtual mem-
ory and so, it utilized hard disk as a virtual memory
source, which resulted in a slower overall memory
accessing time than using only CPU memory in di-
rect solver DGESV. That is, by using hard disk mem-
ory rather than CPU memory as swap memory, the
DOF was increased 1.9 times in Ex5 compared to
Ex4, but the calculation time was 31 236 sec which
was 155 times larger than 202 sec in Ex4. Therefore,
in the case of Ex5, 59 643 DOF, DSGESV was need-
ed 8 hours 41 minutes (31 236 sec), MATLAB® solver
‘\> 57 minutes (3443 sec) and DGESV took 20 min
(1218 sec). In all cases, the direct solver, the DGESV
routine showed the fastest calculation speed. For the
commercial software LISA®, the solving time was
106 sec. A comparative analysis of Table2, Fig.5
and Fig. 6 revealed interesting facts. It was summar-
ized the calculation time for 5000 DOF in Table 3.

Direct solver DGESV showed almost the same
calculation time in both cases. The iterative solvers,
CG and DSGESV, showed 4-8 times faster com-
puting time with the SPD coefficient matrix in sys-
tem equation. This was because the DOF was almost
the same, but the SPD matrix was a sparser matrix
than Ex2. Even when the MATLAB® operator ‘\’
was used, the calculation time was half shorter in the
sparse matrix SPD. As an interesting result, the di-
rect method DGESV in Ex2 showed faster calcu-

Table 3 Comparison of computing time using full matrix
solvers for general matrix (Ex2) and sparse SPD
matrix (Unit: sec)

bOF Ex2 SPD Tt
5043 5000 Ex2/SPD

CG 133.85 15.90 8.42

PCG-D 12.06 10.62 1.14

DSGESV 1.65 041 3.99

DGESV 0.75 0.73 1.02

MATLAB® \’ 1.12 0.54 2.07
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lation speed than the iterative method DSGESV, but
the iterative method showed faster calculation time
than the direct method in sparse matrix SPD. That is,
when the number of non-zero coefficients was small,
the iteration method showed faster calculation speed
than the direct method.

5.2 Sparse Matrix Solving Method

In Section 5.1, full-matrix solving methods were
used to examine the computing times in system equa-
tion for the SPD coefficient matrix (Figs. 5~ 6, 200 ~
10 000 DOF) and for the stiffness matrix obtained
in the structural displacement FEM (Table 2, 1323 ~
59 643 DOF). Practically, there were limitations on the
size of matrix that could be solved due to full matrix
memory space. Also, since the matrix operation was
performed on the ‘0’ values in the coefficient matrix
A (Figs. 7~8), lots of calculation time was required
for full matrix solvers. If there were many ‘0’ values
in coefficient matrix A, using a sparse solver would
be benefit from memory savings and computation
speed. In order to use the sparse matrix solving meth-
ods, the system matrix A must be converted from full
matrix form to a sparse matrix one. In OCTAVE" and
MATLAB?®, the sparse matrix solver used the ¢\’ op-
erator, which was the same form as the full matrix
solver. However, the system matrix A must be trans-
formed into a sparse matrix form. In this paper, it
was adopted in order to make the system coefficient
matrix A a sparse matrix form, one-based indexing
CSR (compressed sparse row) format'®**" in FORTRAN
codes and CSC (compressed sparse column) format in
MATLAB® and OCTAVE® codes, respectively. NNZ
(number of non-zero) was defined the number of non-
zero coefficients in the coefficient matrix A whose
size was n x n is. Sparsity (%) is defined as sparsity
(%) =NNZ/(nxn) x 100. Table 4 and Table 5 showed
the DOF, NNZ, and sparsity(%) of the data to be
used in this section and the amount of memory re-
quired to store matrix A in full matrix and sparse
matrix. Table 4 showed that the 50 000 DOF (#7)
model required 20 GB of memory to process a full
matrix of coefficients A, but a sparse matrix required

only 2 MB, which was 0.01 % of the original mem-
ory requirement. 300 000 DOF (#10) required 720 GB
of memory for the full matrix, but it could not be
handled by general PCs. However, if sparse matrix
form is used, only 12 MB of 0.002 % of raw data is
needed. Table 6 compared computing times of full
matrix solvers and sparse matrix solvers for from #1
to #5 data models.

When using the full matrix solver, operator ‘\’ in
models with a range of 200 DOF ~ 10 000 DOF, it
showed computing time ratio of OCTAVE® / MATLAB®™
was 2 ~32. However, using sparse solver showed

Table 4 Comparison of memory sizes of full and sparse
for SPD matrix, NNZ, sparsity (%)

DOF Full NNz Sparse | Spar. (%)
#1 200 32 MB 970 0.01 MB 243
#2 1000 8 MB 4934 0.04 MB 0.49
#3 2000 32MB 9908 0.08 MB 0.25
#4 5000 200MB | 24856 | 0.20MB 0.10
#5| 10000 | 80O0MB | 49798 | 0.40 MB 0.05
#6 | 30000 72GB | 149652 | 1.20MB 0.02
#7 | 50000 20GB | 249550 | 2.00 MB 0.01
#8| 01M 80GB | 499366 | 3.99MB | 5x107°
#| 02M 320GB | 999104 | 7.99MB | 3x10?
#10| 03M 720GB | 1498902 |11.99 MB| 1x10?
#11| 0.5M 2TB |2498584|19.99MB| 5x10*
#12 1M 8TB |4997998(39.98 MB| 5x10*
#13 2M 32TB 9997170 |79.98 MB| 3x10™*
#14 5M 200 TB |24 995526/ 0.2 GB 1x10*
#15| 10M 800 TB |49993 674| 0.4 GB 5%107
#16| 20M 32PB |99991054| 0.8GB 3x107

Table 5 Comparison of memory sizes of full and sparse
matrix for FEM stiffness matrix K, NNZ, spar-

sity (%)

DOF Full NNZ Sparse | Spar. (%)
Ex1| 1323 14 MB 29453 | 0.24 MB 1.68
Ex2| 5043 203 MB | 123381 | 0.99 MB 0.49
Ex3| 19683 | 3.10GB | 505325 | 4.04 MB 0.13
Ex4| 30603 | 7.49GB | 790713 | 6.33 MB 0.08
Ex5| 59643 |28.46GB | 1564440 |12.52MB| 0.04
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OCTAVE"/MATLAB" = 1. The method using sparse
solver “\” showed the same performance of MATLAB®
and OCTAVE®. In the 5000 DOF model (#4), the
sparse solver (0.006 sec) of MATLAB® and OCTAVE®
was 122 times faster than the full matrix direct solver
DGESV (0.732 sec). Sparse PCG-D (0.016 sec) showed
664 times faster than full matrix PCG-D (10.62 sec).
Sparse solvers were used to calculate system equation
with the SPD coefficient matrix from 200 to 20 000 000
DOF using eight sparse matrix methods.

(1) PARDISO!"?#2%. pARallel sparse Direct and
multi-recursive Iterative linear SOlvers

(2) OCTAVE® *\’, OCT-S.

3) MATLAB® V', MAT-S.

(4) CGUS1621.2)

(5) PCG-DU51621.29)

(6) PCG-split-D!*!212 pCG with diagonal split
preconditioner.

(7) PCG-IC(0)'*!16212429. pPCG with incomplete
Cholesky decomposition with no fillin preconditioner

(8) PCG-ILU(0)!'*!162129; PCG  with incomplete

LU decomposition with no fillin preconditioner

Table 6 Comparison of computing time of Az= b using
full matrix solvers and sparse matrix solvers,

(Unit: sec)
DOF OCT. | MAT. | PCG-D | DSG. |DGE.
F|2.0x10°| 0. |2.0x10° A
#1 | 200 - - 5.0x10™{0.002
S | 1.0x107| 1.0x10 0.
F |6.3x107|3.0x107| 1.6x10™" ”
#2 | 1000 - - 1.2x107 | 0.01
S | 1.0x107| 1.0x10 0.
F |6.4x107|6.5x10%| 1.1 ”
#3 2000 S - —16.9x107| 0.05
S |2.0x107|2.0x107 | 1.6x10
F | 13x10" |5.4x10"| 10.6 p
#4 | 5000 S S —14.1x10" | 0.73
S |6.0x107|6.0x107 | 1.6x10
us | 10 |F 1.0x10° | 3.3 63.4 25 |as
000 | s | 1.4x102| 1.1x107 [4.7x107| '

*F and S in column 3 mean full matrix solver and sparse matrix
solver, each.

*PCG-D: PCG with diagonal preconditioner, full matrix codes
are from Ref. (26) and sparse matrix codes are modified
from Ref. (25).

*DSGESV and DGESV are full matrix solver.
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In the case of the 2000 DOF mentioned in Section
5.1, the PCG-D (marker: black @) implemented with
OCTAVE" language was 21 436 sec, and the OCTAVE®
full matrix solver ‘\’ (marker: red ), 0.637 sec and
OCTAVE" sparse solver ‘\’ (-e-), 0.001 8 sec, respectively
(Fig. 10). The calculation time ratio was 12 000 000 :
425: 1. OCTAVE® sparse solver °\’ showed twelve
million times faster calculation time than PCG-D
translated by OCTAVE" language. The computing
time using the sparse solver PCG-D compiled with
FORTRAN was 3.3 x 107 sec, which was 1.8 times
slower than the OCTAVE" sparse solver ‘\’. PCG-D
adopted the diagonal terms of the coefficient matrix
A as the preconditioner M and PCG-split-D adopted

2 of the co-

the preconditioner as the (diagonal terms)
efficient matrix A, respectively. Figure 10 and Fig. 11
showed that PCG-split-D was more efficient than
PCG-D because the iteration number in PCG-split-D
is 40 % smaller than in PCG-D above 500 000 DOF
model. PCG-IC(0) showed similar calculation times
as PCG-D and PCG-split-D, even though the number

of iterations was 1/2 to 1/3 times that of PCG-D or

L]
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i MATLAB-PCG-D, full matrx =
0 F * -
g &
>
g 10 |
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»=fk == PCG-ILLHO)
- # ocTrCGD
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& maTrceD
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Fig. 10 Comparison of computing time according to
sparse solvers for SPD matrix, marker-line: A-:
PARDISO, O-: OCT-S V, O-: MAT-S €V, +-:
CG, o-: PCG-D, o--: PCG-split-D., o-.: PCG-
IC(0), oe==: PCG-ILU(0), ®: OCTAVE®-PCG-D,
full matrix solver, 0 OCTAVE® “\" -full matrix
solver, : MATLAB®-PCG-D, full matrix solver,
@: MATLAB® ¢\’ -full matrix solver, range: 200
DOF ~ 20 000 000 DOF (Unit: sec)
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PCG-split-D (Fig. 11). Thus, it meant that the com-
putation amount per iteration of PCG-D or PCG-
split-D was smaller than PCG-IC(0). In the SPD co-
efficient matrix data, iteration number in PCG-D
showed 140 % greater than the number of iteration
in PCG-split-D and needed 140 % of the calculation
time. In the case of 2000000 DOF (#13), the calcu-
lation time in OCTAVE® ‘\’ was 47.8 sec, but the
time to read the data file took 6301 sec. It took 114
sec for MATLAB® and 5.2 sec for FORTRAN PCG
to read the data file #13. Saad showed that when
the coefficient matrix A was the SPD matrix and the
preconditioner M was incomplete Cholesky product,
A=M = LL', it was equal to the number of iter-
ations when using M as the preconditioner or when
splitting it into L and L' for PCG method®".

On the other hand, when the coefficient matrix A
was a general matrix, a preconditioner was obtained
with incomplete LU factorization instead of incom-
plete Cholesky decomposition. Split GMRES using
L and U as preconditioners in GMRES instead of
PCG was most effective when the coefficient matrix
A was nearly symmetric and was not effective from
using preconditioner M = LU in other cases®. In
this paper, GMRES was applied to FEM data, which
showed that it was inferior to PCG-D or PCG-split-D
in terms of calculation speed. Especially, when using

10’k
w
C
S
® 10}
2
. —e—CG
10° —6—PCGD
—B— PCG-SPLIT-D
—— PCGHC(0)
10° 10° 10° 10° 10"
Degree of Freedom
Fig. 11 Comparison of iterations according to sparse

solvers for SPD matrix, marker-line: O-: CG ,
-1 PCG-D, o-: PCG-split-D, +-: PCG-IC(0),
range: 200 DOF ~ 20 000 000 DOF, (Unit: number)

FEM data, it showed a tendency to diverge above
1323 DOF (Exl model). FGMRES (RCI Flexible
Generalized Minimal RESidual method with ILUT
Preconditioner)®® and MGMRES(restarted GMRES)
suggested by Burkardt®” were less likely to diverge
than GMRES. However, according to the character-
istics of the coefficient matrix A, the user had to de-
termine the inner loop and the outer loop number in
advance, and the divergence or convergence was de-
termined according to these values. Also, if the num-
ber of inner loop was large, the solution converged
rapidly but the memory to be memorized increased
and the memory efficiency decreased. Here, interest-
ingly, Saad®" described the difference in computa-
tional complexity in PCG when choosing precondi-
tioner using incomplete Cholesky decomposition for
SPD matrix. In this paper, we showed that the PCG
could also be applied to non-SPD matrices and the
same description applied to the SPD matrix when we
adopted diagonal preconditioner or split diagonal pre-
conditioner and it could be especially emphasized to
non-SPD coefficient matrix. The PCG method with in-
complete Cholesky decomposition preconditioner was
known to apply only to SPD matrix®. If the coeffi-
cient matrix was non-SPD matrix, Cholesky decom-
position could not be applied; instead, LU decomposi-
tion applicable to a general matrix could be applied.
The PCG-IC(0) could be applied only when the coef-
ficient matrix was SPD, so it could not be applied to
the FEM system matrix equation applied the actual
boundary condition as in Fig. 8.

In Table5 (1323 ~59 643 DOF), the PCD-IC(0)
could not be applied because the matrix was non-
SPD. In order to solve the general matrix in the PCG
method, the preconditioner could be obtained by in-
complete LU decomposition instead of incomplete
Cholesky decomposition. We could use PCG-ILU(0),
which used L and U obtained by incomplete LU de-
composition with no fillin as the preconditioner, to
perform the same size LU decomposition using the
coefficient matrix A. The preconditioner ILU(0) was
efficient in terms of memory because the size and

position of the matrix were the same as the coeffi-
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cient matrix A, but there was a restriction on its use
because it tended to diverge. In case of non-SPD
coefficient matrix as in Fig. 12, PCG-ILU(0) showed
divergence when the size of the matrix was larger
than 1323 DOF. As an alternative, we could use PCG-
ILU(z) by obtaining L and U with Crout incomplete
LU decomposition. However, the size of L and U ob-
tained by Crout incomplete LU decomposition was
large, which was not useful in terms of memory. The
Crout method could be used to solve the ILU when
using the Crout ILU method. However, when the
Crout method was used to obtain the preconditioner
LU, it showed NNZ (ILU(z)) >> NNZ(A) (Table 7).
Therefore, it could not be applied to a large size non-
SPD coefficient matrix. On the other hand, as shown
in the appendix, PCG-D or PCG-split-D could per-
form very fast convergences if coefficient matrix A
was not asymmetric. In Fig. 12, the full matrix direct
solver DGESV (marker: red ¥) was 1218 sec and
the MATLAB® “\’ -full matrix solver (marker: blue
@) was 3443 sec in the case of 59 643 DOF.

The MATLAB" sparse matrix solver \’ (marker:
blue --) was 0.592 sec. Therefore, when using the
MATLAB® operator ¢\’, computing time ratio of the

o || == PARDISO

10 —a—ocTs
—— MAT-S
——CG

_|| =B=rceD

10° | === PCG-SPLIT-D
- 8-- PCGLU{)

DGESV
MAT-F

Computing time, sec
=

10* 10°
Degree of Freedom

Fig. 12 Comparison of computing time using sparse
solvers for non-SPD matrix, marker-line: A-:
PARDISO, O-: OCTAVE® *\’, -1 MATLAB®
", +-: CG, o-: PCG-D, o--: PCG-split-D., gs=:
PCG-ILU(0), : MATLAB® " - full matrix
solver, ¥: DGESV-full matrix solver, range: 75
DOF ~ 59 643 DOF (Unit: sec)
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full matrix solver / sparse matrix solver =15816 times.
That is, the sparse MATLAB®™ solver was about six
thousand times faster than the full matrix MATLAB®
solver.

Ratio of number of iterations in the sparse PCG
method was PCD-D /PCD-split-D = 1.4 in the SPD
matrix (Fig. 11). When the coefficient of the matrix
was non-SPD (Fig. 13), it showed ratio of number
of iterations of PCD-D /PCD-split-D =4 and the con-
vergence speed of PCG-split-D was 4 times faster
than PCG-D. That is, in the case of the asymmetric
matrix, PCG-split-D showed shorter computation time
than PCG-D. The PCG-split-D, 4.805 sec, was 4.7
times faster than the PCG-D, 22.792 sec, in the case
of the 59 643 DOF, where the coefficient matrix was

Table 7 Comparison of number of non-zero of coefficient
matrix A, incomplete LU with no fillin (ILU(0))
and incomplete LU with Crout ILU(z), z: drop
tolerance, =10

T NNZ NNZ NNZ
&) (ILU(0)) (ILU())
Exl| 1323 29453 29453 132910
Ex2| 5043 123 381 123 381 922478
Ex3| 19683 505 325 505325 | 6100455
Ex4| 30603 790713 790713 | 11030223
Ex5| 59643 1564440 | 1564440 | 25895749

@ 10°
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Fig. 13 Comparison of iterations using sparse solvers for
non-SPD matrix, marker-line: O-: CG, {-: PCG-D,
o-: PCG-split-D, range: 75 DOF ~ 59 643 DOF,
(Unit: number)
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a little asymmetric matrix (Fig. 12). When the co-
efficient matrix was SPD (Fig. 10), PCG-split-D was
compared with 40 % faster than PCG-D. In sparse
solvers, the speed of calculation depended on the
non-zero number of the coefficient matrix and the
non-SPD matrix, not on the size of the matrix. In
Fig. 14, it was compared the computing times ac-
cording to NNZ of SPD and non-SPD coefficient
matrices. In SPD coefficient matrix 20 000 000 DOF,
PARDISO (mark: ¥) and MATLAB® sparse ‘\" (mark:
A) solvers showed 193 sec and 98 sec, respectively.
Using the FEM stiffness matrix, non-SPD matrix,
for example, Ex5 (59 643 DOF, NNZ = 1 564 440),
system equation was solved by PCG-split-D, result-
ing in 4.805 sec, which was nearly equivalent time
to solve 200 000 DOF SPD matrix (#9) problem.
In other words, the sparse solver was not dependent
on the size of the coefficient matrix A but on the
number of non-zero of the coefficient matrix A. When
NNZ was the same, SPD matrix converged faster
than the non-SPD matrix in CG method and PCG-
D converges equally to SPD or non-SPD matrix.
However, in case of equal NNZs of coefficient ma-
trices, it showed that PCG-split-D showed faster con-
vergence in non-SPD matrices than SPD ones.

==+ CGFEM
=== PCG-D-FEM
== PCG-SPLIT-FEM
—8— CG-SPD

—4— PCG-D-SFD
=8 PCG-SPLIT-SPD
¥ MATS

A PARDISO

Computing time, sec

10° 10 10° 10° 10
Number of nozero value of matrix A

Fig. 14 Comparison of computing time according to
NNZ of sparse solvers for SPD and non-SPD
matrix, marker-line: O-: CG-SPD, <>-: PCG-D-
SPD, o-: PCG-split-D-SPD, O--: CG-FEM, --:
PCG-D-FEM, o--: PCG-split-D-FEM, range: 200

DOF ~20 000 000 DOF (Unit: sec)

The NNZ of the non-SPD matrix Ex5 (59 643 DOF,
NNZ: 1564 440) was equal to the NNZ of SPD ma-
trix #10 (300 000 DOF, NNZ: 1 498 902). However, the
time required for calculating using Ex5 using PCG-
split-D was equal to the time for solving #9 (200 000
DOF, NNZ: 999 104). The reason why was that the
number of iterations when using PCG-split-D for SPD
matrix #9 and #10 was 1533 and 1846, respectively.
However, when applying PCG-split-D to non-SPD
matrix Ex5, the number of iterations was 2929. The
non-SPD matrix Ex5 showed 48 828 and 14 475 iter-
ations, respectively, when CG or PCG-D was used to
solve system equation. Consequently, the computing
time was the shortest since the number of iterations
was smaller than CG or PCG-D when solving non-
SPD matrix Ex5 with PCG-split-D.

6. Conclusions

(1) In this paper, we proposed physical coordi-
nated based 3-node triangular FE, 4-node rectan-
gular FE, and 4-node quadrilateral FE codes accord-
ing to the Kirchhoff thin plate theory.

(2) FE codes using isoparametric quadrilateral FE
and 3-D plate shell FE elements based on the Mindlin-
Reissner thick plate theory were also presented.

(3) We found that there would be some errors in
the FE codes presented by Semie® through validation
test using a three-node triangular FE codes developed
in this paper.

(4) The displacements were compared at the cen-
ter point of a square plate with four sides fixed and
under constant pressure. Three FE codes, which were
physical coordinated based 3-node triangular FE, 4-
node rectangular FE, and 4-node quadrilateral FE
program developed based on the Kirchhoff plate theo-
ry, showed within a deviation of 0.9% from the theo-
retical value obtained by the Levy method. Therefore,
three developed FEM codes were proved to be ade-
quate to use.

(5) We also presented results using natural coordi-
nates based isoparametric quadrilateral FE and 3-D
plate shell FE codes based on the Mindlin-Reissner
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thick plate theory. The displacement was greater than
8 % of the value obtained by the Kirchhoff thin plate
theory. The commercial software LISA analysis results
were also compared and it was 16% higher than
Kirchhoff’s theory without taking shear strain into
account.

(6) The coefficient matrix from the actual FEM
analysis was a non-SPD matrix. In case of 59 643
DOF non-SPD coefficient matrix, it showed that the
calculation time was 1218 sec of the MKL library
full-matrix direct solver DGESV, 4.805 sec in sparse
PCG-split-D and 0.590 sec in sparse MATLAB V’,
respectively, indicating that the sparse solvers were
superior to the full matrix solvers. Especially, sparse
PARDISO took 0.345 sec.

(7) Sparse solvers showed excellent memory saving
and computation speed when coefficient matrix was
sparse when solving large system equations.

(8) FGMRES and MGMRES were less likely to
diverge than GMRES when solving system equations
with non-SPD coefficient matrix. However, accord-
ing to the characteristics of the coefficient matrix, the
number of inner loop and the number of outer loop
must be predetermined by the user, and divergence or
convergence was determined according to these values.
Also, if the iteration number of inner loop was large,
the solution vector converged rapidly but the memory
to be memorized increased and the memory efficiency
decreased. Calculation time was needed more than
sparse PCG-D or PCG-split-D.

(9) In the case of the SPD coefficient matrix, the
calculation performance of PCG-D and PCG-split-D
was similar, but in the case of non-SPD coefficient
matrix, PCG-split-D showed faster computation time
than PCG-D. In the non-SPD matrix, 59 643 DOF,
PCG-split-D was five times faster than PCG-D due
to faster convergence.

(10) OCTAVE" showed that reading data files was
very slower than in MATLAB® or FORTRAN.

(11) It showed that PCG-D and PCG-split-D al-
most were required the same calculation amount per
iteration to solve system equations with SPD coeffi-
cient matrix.

344 | Trans. Korean Soc. Noise Vib. Eng., 29(3) : 327~346, 2019

(12) If the coefficient matrix was asymmetric, it
showed that it may be happened to inaccurate re-
sults or divergency in PCG-D, PCG-split-D and PCG
ILU(0). The PCG-ILU(z) using Crout ILU was accu-
rate, but required more memory than ILU(0), which
may not be suitable for large-size problem.

(13) Sparse solver was not dependent on the size
of the coefficient matrix A but on the number of non-
zero of the coefficient matrix A.

(14) In case of system equation with large non-
SPD coefficient matrices, it showed that computing
times were ordered with PARDISO, MATLAB® sparse
operator ‘\’ and sparse PCG-split-D in short time
order. But, in case of large SPD matrix, for example,
20 000 000 DOF, sparse MATLAB® <", PARDISO,
and sparse PCG-split-D exhibited 98 sec, 193 sec, and
5632 sec, respectively.
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Appendix

A study on the applicability of PCG
method by the asymmetry of coefficient
matrix in system equation

We applied PCG method to SPD coefficient ma-
trix #1 ~#16 (Table 4, Fig. 10) and non-SPD matrix
Ex1 ~Ex5 (Table 5, Fig. 12) similar to symmetric ma-
trix as a whole. And we got solutions within an ac-
ceptable accuracy. However, CG or PCG methods
should be used with caution when solving system
equations with non-SPD matrices other than SPD ma-
trices. We investigated two examples like as followed.

Example 1: In the system equation, Az=b, if the
coefficient matrix A is a general matrix with strong

asymmetry.

S

Il
— o oMt
cConwo w
w oo
o wo
N UTO RO

I

b={22 12 12 9 11}

z={1111

CG, PCG with ILU(0) or PCG with diagonal pre-
conditioner (PCG-D) and PCG with split diagonal
preconditioner (PCG-split-D) showed incorrect re-
sults but only PCG with Crout version showed cor-
rect results (Table Al).

Example 2: If the coefficient matrix is not asym-

Trans. Korean Soc. Noise Vib. Eng., 29(3) : 327~346, 2019 | 345



Seok-Tae Park; Development of Structural Displacement Finite Element Codes Based on Physical Coordinates and ...

metric in the system equation Az=1b,
& Seok-Tae Park, B.S. in Hanyang

53176 ~ University, Mechanical Eng., 1984.,
36204 M.S. in KAIST, Mechanical Eng.,
A=10273 31, 1986., Ph.D. in Aj iversi
703 4 2 986., .D. in Ajou University,
6 4327 Systems Eng., 1999. 1986 ~ 1989.,

KAIST (KIST) Mechanical Eng., re-
: ) searcher. 1989 ~ 1992., Ssangyong
Motor Co senior researcher. 1993 ~ 1999., IAE Automotive
b={22 15 15 16 22} Technical Lab. principal researcher. 2000 ~ present, in
Chungbuk Health & Science University Assistant Pro-

z={1111 1},

CG only showed the wrong results (Table Al). fessor. His principal interest is the fields of sound quality

index codes programming, noise control, and subjective
Table A1 Analysis results of PCG method according to

o : ) evaluation, loudspeaker, horn and microspeaker system
characteristics of coefficient matrix A

analysis and design, boundary integral analysis in

X(1) | X(2) | XB) | X4 | X(5) Acoustics.
Exact sol. 1. 1. 1. 1. 1.
CG 3473 | =772 | 1143 | -575 | -1044

PCG-D 10565 | -3604 | 3729 |-13531| 3484
PCG-split-D | 10 565 | -3604 | 3729 |-13531| 3484
PCG-ILU(0) | 1.012 | 0.95 0.97 1.12 | 0.93
PCG-Crout | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

Ex

[N

CG 0.998 | 1.001 | 1.00 1.01 | 1.000
PCG-D 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Ex2| PCG-split-D | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
PCG-ILU(0) | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

PCG-Crout | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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An Experimental Study on the Friction Noise of Interior
and External Automotive Materials by Endurance Test
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ABSTRACT

In this study, we investigated the noise characteristics using the friction curve of an ABS material
where surface changes occurred owing to continuous friction using a friction test apparatus. To artifi-
cially generate instability, the acceleration and the friction coefficient were measured after 90 000 cycles
rubbing at a normal force of 40 N and a velocity of 80 mm/s. The change in the slope according to the
coefficient of friction and the slip speed is considered to be an important factor of friction noise and it
can be inferred that the slope of the sound is caused by the accelerated durable friction noise. It can be

inferred that the moment the slope becomes negative is the endurance life of ABS.
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ABSTRACT

Various techniques have been proposed to shorten the analysis time of the traditional acoustic direct
boundary element method. The overall analysis time can be reduced by vector operations and parallel
operations. When constructing the system equation, unnecessary repetitions were reduced and modified sep-
arately to increase the analysis speed. To solve the system equations, computation speeds for each case to
run on a CPU were compared using LINPACK-, LAPACK-, and MKL-dedicated libraries. Furthermore,
when the system equations were solved by hybrid programming using the CPU and GPU, results that were
hundreds of times faster could be achieved than when using multiple CPUs. The system matrix had a com-
plex, asymmetric, dense matrix form; thus, direct solution methods were used. A system matrix equation
solver code written by the hybrid method using Fortran and C languages was executed in the CUDA core
of the GPU, enabling high-speed operations. The prediction results of the input acoustic impedance of a
cone horn using the developed direct boundary element method code were in good agreement with the test
results. It was possible to perform an acoustic analysis of several thousand degrees of freedom using the
developed acoustic direct boundary element method codes at the time of a cup of tea. When using the
acoustic boundary element method codes for calculations over 20 000 degrees of freedom and at 200 fre-

quency points, results could be obtained within a few hours.
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1. Introduction

Park” analyzed a loudspeaker enclosure system
with 1786 boundary element(BE)s and 1609 nodes
using a commercial acoustic boundary element meth-
od (BEM) program in 2005. In conventional direct
BEM, the coefficient matrix of the system equation is
dense, asymmetric, and requires a large amount of
computation. Acoustic analysis was performed at 29
center frequency points in the 1/3 octave band center
frequency between 31.5 Hz and 20 000 Hz.

The analysis time for one frequency point was 12
hours and 50 minutes, which took 15 days to obtain
the acoustic response curve of the loudspeaker enclo-
sure at all 29 frequency points. In order to reduce the
number of boundary elements to be used for acous-
tic modeling, the loudspeaker part was modeled so
that the maximum side length of the boundary ele-
ment was 0.7 cm, but the enclosure part had a max-
imum side length of 10 cm. When applying the 1/6
wavelength rule, only the analysis result was mean-
ingful up to 8000 Hz with respect to the loudspeaker
and below 600 Hz with respect to the enclosure. Thus,
the acoustic response characteristics of the loud-
speaker enclosure system were in no good agree-
ments with the test results. Rather, LEAP® software
showed in good agreements with the test results.
LEAP" required input data like as the loudspeaker’s
Thiele-Small parameters, enclosure’s internal and ex-
ternal dimensions, absorption materials types and its

filling ratio, and the location of the speakers in the
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enclosure. If the maximum element length of the en-
closure could be modeled to be less than 0.7 cm so
that the upper frequency limit was up to 8000 Hz, it
could be assumed that the predicted results of the
acoustic response characteristics could be accurate
ones compared to test ones. However, it could not be
analyzed due to excessive computation time accord-
ing to an increase in the number of boundary elements.
To analyze the acoustic response of the loudspeakers
used for home audio, microphones mounted on the mo-
bile phone, and the head acoustic transfer function, it
should be analyzed with the analysis frequency range
of 400 Hz ~ 20 000 Hz and 100 frequency points ~200
frequency points.

Therefore, the number of boundary elements neces-
sary for BE modeling also needed from several thou-
sands to tens of thousands. The calculation ability of
PC (personal computer) used was considered impos-
sible to perform acoustic analysis with BEM at that
time. In 2013, Kirkup® analyzed the input acoustic
impedance of a rectangular shape acoustic horn used
in a PA (public address) array using a three-dimen-
sional acoustic BEM. Using the acoustic BEM pro-
gram® developed by himself, he reported that the
number of elements used was 2189 and the analysis
time per one frequency point was 23 min. In 2014
Park et al., to obtain the input acoustic impedance
of the conical horn, they made the acoustic impedance
head using the piezo exciter proposed by Benade.
This device was used to measure the sound pressure
simultaneously from two microphones. The input acous-
tic impedance of the conical horn was derived by a



Seok-Tae Park ; Development of High Performance Computing Codes in Direct Boundary Element Method Using Hybrid ...

signal processing technique using the wave decom-
position theory proposed by Seybert et al. The larger
the cone angle, the more accurately the input acoustic
impedance was predicted by the Leach method than
the Lemaitre theory or the modified Lemaitre for-
mula. The input acoustic impedance of the conical
horn was estimated using the Leach method.

At that time, the input acoustic impedance of the
horn was not analyzed by using acoustic BEM.
Recently, Vicente® performed acoustic analysis of a
microphone with openBEM® operated on MATLAB®.
The number of boundary elements used was reported
about 2000 and the calculation time was about one
hour per frequency point. In this papers, we described
methods for improving the speed of acoustic analy-
sis in a conventional acoustic direct BEM codes and
the usefulness of a high speed acoustic direct BEM

program developed®”.

2. Comparison of Analysis Time
for Matrix Multiplication

2.1 Vector Processing Method

In a computer architecture, one arithmetic operation
is executed with one instruction, which is called a
single instruction single data (SISD)®. When the length
of the register in the CPU is longer than the data
length, multiple operations can be performed in one
instruction word at a time and this is referred to as
SIMD (single instruction multiple data). The SIMD
technique is called vector processing. Figure 1 shows
the flow of general vector processing”®. For exam-
ple, if the length of single precision real data is 4

doi=1,n
CliI=A[i+BIi]
end do
IA[4] Al A2l Al ‘registcr
+  + + +
|B[4] B[3]  B[2] B[1] ‘rcgistcr
Il Il Il [l
lcr o3 o register

Fig. 1 Vectorization loop for SIMD, for single precision
real data: 4 byte, 128 bit register

bytes, data length is 32 bits and the length of the
register to be computed is 128 bits, then four real
operations are performed at once in one SIMD in-
struction. Theoretically, SIMD vector computation is
four times faster than SISD computation in this case.
Depending on the FORTRAN compiler options, it is
possible to perform vector operations and speed up

the analysis”.

2.2 Parallel Processing Method

Parallel operation is a technique that uses several
CPU cores in the CPU at the same time. OpenMP
(open multi-processing) directives can be used to per-
form parallel operations on multiple cores mounted
on a PC. Figure2 shows a fork-join model that is a
parallel computing method®. OpenMP directives are
used to perform parallel operations on a particular in-
terval in program. When the master thread performs
sequential operations and then encounters the openMP
directive, threads are created in that portion and par-
allel operations are performed. At the end of the
openMP directive, the previously created threads are
automatically destroyed”®.
Figure 3 shows a simplified code and flow dia-

gram for obtaining a matrix sum using four CPU

cores.
Master = ———— W\ |Master Master | f= = = = = = Master
thread |/ == === ~Y|thread | fo===== =~N\Jthread |fr===== -~ thread
B — —
I ~7 ————— —“A S————— “n
| S—— [ ———l N -

Parallel region Parallel region Parallel region

Fig.2 Fork-join model of parallel processing

1$OMP PARALLEL DO
ISOMP RARALLEL DO I I I ]
doi=ln i=1 i=5 i=9 i=13
Cli=A[i]+BIi] i=2 i=6 i=10 | | i=14
enddo i=3 i=7 i=11 | | i=15
I$OMP END PARALLEL DO i=4 i=8 i=12 i=16
I

Implicit barrier

Fig. 3 Operation using openMP for 4 multi processors
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2.3 Calculation with GPU Accelerator

In multiple CPU cores, it can write codes to per-
form parallel operations using the openMP directive.
The latest multi-CPUs are equipped with 20 cores per
CPU". On the other hand, parallel processing can be
done with the openACC (open accelerators) directive
in the graphics processing unit (GPU) on the graph-
ics card, and it is executed in the compute unified de-
vice architecture(CUDA) cores'”.

The latest graphics card NVIDIA® TITAN X based
on Pascal architecture has 3840 CUDA cores and 384
bits. Therefore, even if the performance of the CPU
core is superior to that of the GPU core, the GPU op-
eration method can be faster than the CPU operation

method as a whole.

2.4 Calculation Using FORTRAN Library

LINPACK (linear algebra package) is a FORTRAN
library developed by Jack Dongarra et al.'" in 1970.
LINPACK computes basic vector and matrix oper-
ations using the basic linear algebra subprograms
(BLAS) library. LINPACK is further developed by
using LAPACK (linear algebra package)'? to order
to use CPU cache efficiently. PGI® FORTRAN pro-
vides the BLAS library and CuBLAS library using
CUDA, and Intel® Parallel Studio XE (Intel FORTRAN)
provides the MKL library. The computation times
were compared by performing two matrix multiplica-
tion expressions (1) using the methods described in
Section 2.1 to 2.4. Fig. 4 shows matrix operation co-

des and some of the time measurement codes.

AB=C M

Here, the matrices A, B and C are square matrices
each having a size of m x m.

In Fig. 5, The matrix multiplication calculation
times according to matrix sizes were compared. The
PC specification used was Intel” i7 4790K@4.0 GHz,
32 GB RAM and the operating system was Windows 7
64 bit. PGI® FORTRAN compiler was used. In Fig. 5,
standard means that the code in Fig. 4 was used. This

result was obtained by using compiled executable file
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without options of vector and parallel operations.
OpenMP shown in Fig. 5 was the result by using com-
piling and executing the code that contained the code
that declared the openMP directive shown in Fig. 3
to be allocated before and after DO LOOP in Fig. 4.
BLAS in Fig. 5 meant that a BLAS level 3 function
“sgemn” performed a matrix x matrix operation in-
stead of the code in DO LOOP in Fig. 4 and com-
piling with BLAS library when compiling with PGI®
FORTRAN. OpenACC in Fig. 5 meant that the GPU-
accelerated codes in Fig. 6 using openACC directives
were used instead codes of Fig. 4. Intel MKL library
meant the same code as BLAS in PGI® FORTRAN
compiler. And it showed computing time results from
a hybrid compilation of a mix of Intel® FORTRAN

call cpu_time(t1)
DO I=1,M
DO J=1,M
CIhH=0
DOK=1,M
C(L))=C(ILH + AIK) * B(K.J)
ENDDO
ENDDO
ENDDO
Call cpu_time(t2)
WRITE(*,*) 'Elapsed time standard matrix mul. : ',
t2-t1, < sec’

Fig. 4 Codes for standard matrix multiplication, A(m,m)
x B(m,m) and elapsed time check

Matrix multiplication, A(m.m)*B(m,m)
T T

Standard
=4 - Intel MKL library
— &=+ PGl CUBLAS

Calculation time, sec
3

Size of matnx

Fig. 5 Comparison of calculation time for matrix multi-
plication according to matrix sizes
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MKL libraries instead of PGI® FORTRAN’s BLAS
library when compiling with PGI® FORTRAN. PGI
CuBLAS, which showed the fastest calculation time
when the matrix size was more than 5000, used the
CUDA function “CuBLASsgemm” instead of the co-
des in DO LOOP of Fig. 4. This was the result of
compiling and linking with the cusolver library in
PGI” FORTRAN. In Fig. 5, the calculation time of the
matrix multiplication 5000 x 5000 using the CUDA
GPU, PGI CuBLAS, was 0.27 sec, and the time cal-
culated by the CPU as the standard was 1117.2 sec,
which was 4138 times faster than standard.

The matrix multiplication calculation time of
3000 x 3000 or less was shorter than that of PGI®
CuBLAS. The reason for this was that when using
PGI® CuBLAS, it involved transferring CPU RAM
data to GPU RAM and then calculating in GPU
RAM and transferring results back to CPU RAM.
Thus, Intel MKL library was effective when matrix

size was small or computation time was short.

3. Time Ratio Analysis of Traditional
Direct BEM Analysis Parts

As mentioned in Section 1, acoustic direct BEM
had a disadvantage of long analysis time. In order to
shorten the analysis time, it was necessary to find the
time ratio at which each part of the acoustic BEM

call cpu_time(tl)
1$acc data
1$acc kernels loop
DOI=1,M
DO J=1,M
CIL)=0
DOK=1,M
C(LJ) = C(LJ) + A(LK) * B(K.J)
ENDDO
ENDDO
ENDDO
1$acc end data
Call cpu_time(t2)
WRITE(*,*) 'Elapsed time by openACC. : ', t2-t1

Fig. 6 Codes for matrix multiplication by using openACC,
A(m,m) xB(m,m) and elapsed time check

code contributed to the analysis. It was possible to
shorten the overall analysis time by improving the
component with the longest analysis time. The BEM
codes proposed in this papers were based on the di-

(3 The acoustic

rect BEM codes proposed by Wu
BEM analysis process could be divided into four
parts. Fig. 7 showed a flow chart of a conventional
acoustic BEM. (1) preprocessing part of input data,
(2) formation part that constructs a global coefficient
matrix A from element coefficient vectors and a right-
hand side vector b, (3) solving part to solve the sys-
tem of equation, (4) field points part that calculates
the sound pressure at arbitrary field points in space,
and so on. The short cone horn was modeled to esti-
mate the calculation time at each part. The length of
the short cone horn was 136 mm, the throat diame-
ter was 18 mm, the mouth diameter was 90 mm, the
cone angle was 27.9°, and the thickness was 5 mm®.
PC used was called PC1, Intel Core2 Duo T7200@
2 GHz, 2 GB RAM with Windows XP with 32 bit. A
program compiled BEM codes presented by Wu!'¥
was called VerO, which was executed on PCI1. The
calculation time of each part according to the num-
ber of boundary elements used for short cone horn
modeling was shown in Fig. 8, respectively.

In Fig. 8, formation (marker: A) and solving part

(marker: 0O) took up most of the computation time.

Preprocessing part
-Node Coordinates
-Element connectivity
-Material Properties
-Boundary Conditions
—
Formation Part
- Global Matrix A
- Vectorb

R 2

Solving Part
- linear equations : Ax=b

L 2

Field Points Part
- Calculate: pressure, velocity
at field points

Fig. 7 Flow chart of acoustic boundary element method
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100

—8— Preprocess
90 || ==sle=— Fomation
== Solving

Field Pt

Percent ratio of analysis time, %

0 -oo—g—u—\, ; : . o
5 1 15 2 2.5
No of elements x 10°

Fig. 8 Percent ratio of analysis time according to num-
bers of element for short cone horn performed on
Intel Core2 Duo T7200@2 GHz, 2 GB RAM with
Windows XP with 32 bit, based on Ver0

When the number of boundary elements used in the
modeling of cone horn was larger than 4736, the
solving part dominated more than 50 %. Therefore,
in order to shorten the calculation time in the conven-
tional direct BEM analysis, it was firstly necessary to

lower the calculation time of the solving part.

4. Procedures of High Performance
Computing in Traditional Direct BEM

In this papers, we developed and improved tradi-
tional acoustic direct BEM codes by changing the
method of solving the system equation to improve the
speed of calculation of the solving part. And also it
was suggested the method to modify or omit the loop
part which was unnecessarily repeated in the forma-

tion part.

4.1 Calculation Speed Improvement
in Solving Part
The comparisons of the computation time of the
solving part of the developed acoustic BEM pro-
gram were shown in Fig. 9 and Table 1, respective-
ly. Table 1 showed the calculation time of the solv-
ing part according to the number of elements. The

object to be analyzed was the short cone horn de-
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Time for solving part in BEM

Calculation time, sec
2
T

LINPACK
=& = nopara LAPACK
10" —P— MKL libr J
—2p— CUBLAS
. . . . . ! L
0 05 1 15 2 25 3 35 4 45
No. of nodes x 10*

Fig. 9 Comparison of calculation time of solving part of
BEM according to numbers of node performed on
Intel i7 4790K@4 GHz, 32 GB RAM and GTX 980
with Windows 7 with 64 bit

Table 1 Comparison of calculation time of solving part
for cone horn according to no. of elements (Unit:

sec)

eﬁfﬁeﬁfs ﬁgae‘;f Ver0 Verl Verd
1806 905 9.76 0.22 0.02
2146 1075 16.17 0.42 0.03
2828 1416 36.78 1.00 0.05
4736 2370 17147 | 526 0.10
6854 3429 516.84 | 16.44 0.17
8580 4292 1013.75 | 32.32 027
11374 5689 2358.06 | 75.83 0.45
24728 12366 |24137.97| 772.10 | 2.75

scribed in Section 3. The reason why the z-axis was
the number of nodes instead of the number of ele-
ments was that the degree of freedom of the system
equation of BEM was equal to the number of nodes.
In order to implement high speed operation and im-
prove memory limit, it was changed the PC from
Intel® Core™ 2 Duo T7200 with Windows XP to
Intel® i7 4790K@4 GHz 32 GB with Windows 7
Enterprise K based on 64 bit equipped with a GTX
980 GPU card. The following four cases were ap-
plied to the solver of the system equation.

(1) LINPACK: using QR factorization subroutines
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in LINPACK as solver of system equation in BEM
codes, and compiled and linked by PGI® FORTRAN
compiler, without vector and parallel processing, cal-
culated using CPU only, Verl

(2) nopara LAPACK: using QR factorization sub-
routines in LAPACK as solver of system equation in
BEM codes, and compiled and linked by PGI®
FORTRAN compiler, without vector and parallel pro-
cessing, calculated using CPU only, Ver2

(3) MKL libr: application of hybrid compiling
method that Intel® Fortran MKL library with QR fac-
torization subroutine in LAPACK were compiled and
linked by PGI® FORTRAN compiler with options of
parallel processing, calculation using CPU only. It was
called Ver3

(4) CuBLAS: QR factorization subroutines, CuSolver
library in LAPACK optimized for CUDA was used
as a solver in solving part in BEM codes. We uti-
lized CUDA functions to compute in GPU CUDA,
but these codes were composed of hundreds of lines
of code involved to solve system matrix equation
problems with a good combination of these functions.
Fortran and C language interface routines were in-
cluded in the direct BEM code so that C libraries
that contained routines for parallel computation using
pointers within the GPU using CUDA C code could
be used in Fortran codes. It included codes that used
Fortran language to perform functions such as data
transfer, copying, etc., using various functions that
allowed CUDA to process them in parallel. These
developed codes were compiled and linked by Intel®
Fortran compiler to include Intel® Fortran library and
PGI” Fortran library and CUDA C library with the
help of pgi mkl thread library. It was used to calcu-
late system matrix equation using GPU CUDA only,
Ver4.

In Fig.9, the number of nodes 12366 -corre-
sponded to the number of elements 24 728. The cal-
culation time was 772.10 sec for Verl, 93.09 sec for
Ver2, 31.00 sec for Ver3 and 2.75 sec for Verd, res-
pectively. If time ratio was based on CuBLAS, it
showed Verl : Ver2 : Ver3: Ver4=281:34:11:1. In

100 T T T

e

90 - B
80+ B

70+ B

60 - B

50+ B

40| 1

30+ q

Percent ratio of analysis time, %

== Preprocess
20 =—l— Formation ||
=g Sohing
107 Field Pt. ]
0 EEE!:I;. 3
0.5 1 1.5 2 2.5
No ofelements x 10*

Fig. 10 Percent ratio of analysis time according to num-
bers of element for short cone horn Intel i7
4790K@4 GHz, 32 GB RAM and GTX 980 with
Windows 7 with 64 bit, based on Verd

other words, in BEM solving part, using the BEM
codes developed on GPU combined with CuBLAS
library as a solving part, the computation speed for
the number of nodes 12 366 case showed 281 times

faster than using the BEM code proposed by Wu''>.

a3 was ¢€xe-

In Ver0, the program proposed by Wu
cuted on PCI1, computing time was 24 138 sec, and
Ver4 with CuBLAS on Intel i7 4790K showed 8777
times faster than in PCI.

This fast calculation speed was due to the fact that
the Windows XP 32 bit 2 CPU core operation was re-
placed to the i7 4790K Windows 7 64 bit operation
and graphic card GTX 980 Maxwell architecture 256
bit and 2048 CUDA cores, which was a combined
effect of speed enhancement. When the number of
boundary elements was 2146, Kirkup : Ver0 : Verd =
1380 :16.17:0.03 =46 000 : 539 : 1 was obtained in
comparison to the analysis result of Kirkup® men-
tioned in Section 1. In other words, comparing the
computation speeds simply ignoring the performance
difference of the used PC, Verd of CuBLAS showed
46 000 times faster than Kirkup’s analysis. The re-
sults of calculating time ratio of BEM analysis in
Ver4 using CuBLAS were shown in Fig. 10.

The proportion of the solving part in Fig. 8 in-
creased as the number of elements increased, which

was 86.5 % when the number of elements was 24 728,
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but decreased to 1.14 % in the case of Fig. 10 using
the Ver4 program which improved the solving part.
Instead, the formation part was shown in Fig. 8 and
Fig. 10, from 13.4 % to 97.08 %, respectively. Therefore,
it was necessary to reduce the calculation time of the
entire BEM analysis by increasing the calculation

speed of the formation part.

4.2 Calculation Speed Improvement

in Formation Part

In Fig. 7, the global system matrix A was construc-
ted from element coefficient vectors'®. In this proc-
ess, the collocation method was applied to the surface
Helmholtz integral equation and the boundary integral
method was applied to the boundary element method
by discretization. In calculating the coefficient vectors,
Wu"? used the singularity subroutine to calculate the
element coefficient vectors using the connectivity in-
formation of the elements for all element numbers if
any nodes in the outer loop was equal to node inside
of element in inner loop. In this papers, the compu-
tation time in the formation part was reduced by
checking the singularity in advance and eliminating
the unnecessary repetitive calculation of the element
coefficient vectors using this data. More details on
this may be covered in subsequent articles. The for-
mation part was improved and was called as Ver5.
The ratio of calculation time of each part according
to the number of boundary elements was shown in
Fig. 11, respectively. When the number of elements
was 24 718, the proportion of formation part was im-
proved from 97.08 % to 85.50 %.

The input acoustic impedance was calculated by
applying a conventional acoustic direct BEM to a
short cone horn. Table2 showed the total analysis
time according to the number of elements. The whole
BEM analysis time showed 20 times faster than ini-
tial BEM by enhancement of both the solving and
formation part of the initial BEM program (Verl)
using LINPACK suggested by Wu. In addition, Ver5
showed totally 572 times faster than Ver0 with Intel®
Core2 Duo T7200 PC. It may be further reduced the
computation time by using GPU programming with
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Fig. 11 Percent ratio of analysis time according to num-

bers of element for short cone horn Intel i7

4790K@4 GHz, 32 GB RAM and GTX 980 with
Windows 7 with 64 bit, based on Ver5

Table 2 Total analysis time for short cone horn according
to no. of element, (Unit: sec)

No. of elements | Ver0 Verl Ver4 Ver5
1806 34.0 1.8 1.6 0.7
2146 49.0 2.6 22 0.8
2828 92.0 4.5 3.6 1.3
4736 319.0 14.6 9.4 2.6
6854 818.0 354 19.1 5.0
8580 1481.0 61.5 29.5 6.7

11374 3172.0 127.6 522 11.3
24728 27936.0 | 1011.1 241.7 48.8

openAcc or CUDA FORTRAN. It may be topics to
be studied in the future.

5. Acoustic Analysis
for Short Cone Horn

A short cone horn was analyzed using the de-
veloped acoustic direct BEM program. In order to
utilize the preprocessing and postprocessing pro-
grams combined with BEM codes, Helm3D pro-
gram given by Morgans"¥ was modified. Also, the
developed BEM codes have been modified to be
able to be executed with preprocessing and post-

processing software. Postprocessing codes that ran
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in MATLAB®™ or OCTAVE® were also developed. In
direct BEM analysis, non-uniqueness difficulty oc-
curs when analyzing external acoustic problems. The
Schenck method™ (or CHIEF, combined Helmholtz
integral equations formulation) has known as a sim-
ple solution to this problem. In this papers, the non-
uniqueness problem was solved by the Schenck
method™ in the external sound field analysis. In
other words, when solving the external acoustical
field problem, we set the CHIEF points in the in-
ternal field to zero pressure condition as the con-
straints to the surface Helmholtz integral equa-
tion'”. Therefore, the system equation became an
over-determined system which number of given
equations were greater than the unknown vector,
and the solution was solved by the QR decom-
position method. To evaluate the performance of
the developed BEM codes, the computational per-
formance was compared by calculating the input
acoustic impedance of the cone horn, which was sim-
ilar to that of Kirkup’s® analysis. Set CHIEF points
values be 2, and the number of field points was 181
for calculation in the external field pressure. The size
of the global matrix of the solving part became A
(m, n) and m =n + CHIEF points, so the solving part
must be solved by over-determined equations. The
solution was obtained by the least square method
using QR factorization, a direct solution method. The
object to be analyzed was the short cone horn® de-
scribed in Section 3. Table 3 showed the analysis
cases for the cone horn.

Dmax represented the length of the longest side
of the element in boundary element modeling. The
Neumann boundary condition was applied to the throat
area as a velocity boundary condition of 1 m/s. The

@ was the result of the

input acoustic impedance
sound pressure obtained at the closest position div-
ided by the volume velocity, which was the throat
normal velocity x throat area. Fig. 12 showed model
Ex4 meshed using a triangular isoparametric boun-
dary element. Fig. 13 showed the sound pressure dis-
tribution on the surface of the short cone horn where

the number of elements 6854 and the number of no-

Table 3 Simulation model for cone horn, length 136 mm,
throat diameter 18 mm, mouth diameter 90 mm,
cone angle 27.9°, thickness 5 mm

Element Node Dmax (mm)
Ex1 1806 905 30.5
Ex2 2146 1075 18.9
Ex3 6854 3429 6.9
Ex4 42 570 21287 2.8

Fig. 12 Boundary element modeling of short cone horn,
21 287 nodes model, Neumann B.C. velocity, 1 m/s
at throat surface

Wl @

Fig. 13 Pressure contour on surface for short cone horn,
frequency: 5218 Hz, 3429 nodes model, Neumann
B.C. velocity =1 m/s at throat surface

Reference plane

~N Migrophone Piezo
Lo '| I?pe driver
P

e
i

¢ °
chl ch2_|
Analyzer

H/_/

Short cone horn

Fig. 14 Schematic diagram of the input acoustic im-
pedance measurement of cone horn by two mi-
crophone method

des 3429 was analyzed at frequency 5218 Hz.
Using these surface sound pressure results, the
sound pressure in a certain field points could be cal-
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culated at the field point part. Fig. 14 showed a de-
vice for measuring the input acoustic impedance for
the short cone horn used in reference [4].

Impedance heads were fabricated by using piezo
excited elements in the same manner as Benade et al.
as measuring instruments to measure input acoustic
impedance. This exciter was used to generate a ran-
dom sound on cone horn. Since the inner diameter of
the corn horn was 18 mm, one end of the tube with
an inner diameter of 18 mm was connected to the
throat of the cone horn and the mouth part of the
cone horn was left under free air. A piezo exciter
was installed at the end of the tube, and a piezo ex-
citer was driven using a signal filtered with a low-
pass digital filter applied to the random signal so
that the maximum frequency of the piezo exciter
was 10 kHz. Two 1/4 inch microphones were mount-
ed near the middle of the tube to simultaneously
measure the sound pressure inside the tube. The cal-
culated test data was the result of the input acoustic
impedance derived by the signal processing method
according to the wave decomposition theory pro-
posed by Seybert, as shown by the solid line in
Fig. 15.

However, the Seybert theory was a theory that
could be applied in plane wave conditions. Since the

230

225+

220 -

215

210+

205

200

195

Acoustic Impedance, dB

190

185+

N 21,287 |{
Test

180 L — . . S .
10 10
Frequency, Hz

Fig. 15 Comparison of input acoustic impedance of short
cone horn, blue dash-dot: 905 nodes model, black
dashed: 1075 nodes model, red-dotted: 3429 no-
des model, red-solid: 21 287 nodes model, black-
solid: test result
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diameter of the tube was 18 mm, the tube acoustic
wave mode occurred at 9528 Hz or higher, and the
condition of the plane wave in the tube was broken.
Therefore, the test result was unreliable at frequen-
cies higher than 9528 Hz. In addition, since the crit-
ical frequency according to the two microphones in-
tervals was 9270 Hz, test results could be relied on
only lower than 9270 Hz with the test equipment manu-
factured. Below 1000 Hz, the acoustic exciter was not
nearly excited at frequency due to the characteristics
of the piezo exciter. On the other hand, the test was
conducted in a laboratory that was not a completely
anechoic chamber, but the result of the input acoustic
impedance test obtained by signal processing of the
sound pressure data obtained from two microphones
obtained in the low frequency region due to the back-
ground noise in the laboratory was unreliable. Beyond
7000 Hz, the test results derived from the very small
acoustic input signal of the piezo exciter and due to
the high frequency limit due to the high frequency
mode and microphone spacing in the tube showed
no meaningful test results. Therefore, only the test re-
sults (solid lines) in the range between 1000 Hz and
7000 Hz in Fig. 15 were meaningful values. Fig. 15
compared the BEM results with the input acoustic
impedance (black solid line) obtained by test®. In
Fig. 15, Ex1 model (blue dash-dot) showed a complete-
ly different shape from the test result (black solid).
In the case of Ex2 (black-dash), the shape was some-
what similar to the test result. According to the 1/6
wavelength rule, Ex1 or Ex2 should give accurate re-
sults at frequencies below 1874 Hz. Also, Ex1 ~ Ex4
were expected to have similar acoustic patterns below
this frequency range. But, Ex1 and Ex2 showed pat-
terns different from Ex3 or Ex4. The reason for this
was as followed. The BEM model of cone horn had a
cone shape with a thickness of about 5 mm. For the
direct BEM analysis, we modeled the surface of the
cone horn to surround it. Then, an external sound
field analysis was performed. This modeling was like
a shape modeled on a jar or coffee cup. The bottom
of the coffee cup became the throat surface of cone
horn modeling. The result of dividing the sound pres-
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sure near the interior floor of the coffee mug by the
volume velocity inside the coffee mug was input
acoustic impedance, when the floor surface of the
coffee mug vibrated at a constant speed in the fre-
quency range of interest and the outer floor and
other surfaces of the coffee mug were stationary.
However, in this modeling, when the size of the fac-
ing acoustic elements located inside and outside of
the coffee cup having a thickness of 5 mm was larg-
er than the thickness of the coffee cup, the distance
between the facing acoustic elements was too close
comparing to the acoustic element size, singularity
problems occurred. Therefore, to resolve these singu-
larity problems, the size of the element should be
smaller than the theoretical values. In case of Ex1 or
Ex2, it was predicted that the analytical results did
not agree well with the test results because the size
of the coffee cup, ie, the element size, was signifi-
cantly larger than the coffee cup thickness. In other
words, in the BEM analysis, not only the size of
the element but also the distance of the facing ele-
ment affected the accuracy of the analysis. Therefore,
it was predicted that Ex1 and Ex2 did not agree with
the test results. Ex3 (3429 nodes, red-dotted) showed
good agreements with the test results. BEM analysis
results showed better coincident with test results
than Leach’s method”. Model Ex4 was similar to

Sound pressure level, dB

gol— o+ L L L

Frequency, Hz
Fig. 16 Sound pressure level according to off-axis for short
cone horn, frequency range: 400 Hz ~ 20 000 Hz,
3429 nodes model, Neumann B.C. velocity = 1 m/s
at throat surface

that of 3429 nodes model Ex3. Thus, it was not
necessary to model the cone horn more finely than
Ex3. Fig. 16 showed the sound pressure at a distance
of 1 m from the center of throat of the cone horn,
which was from the on-axis response(0°) to the off-
axis acoustic responses (45° ~ 180°).

Throat surface on model Ex3 was excited with a
constant speed of 1 m/s on. Fig. 16 showed the re-
sult obtained from the sound pressure calculated at
the field points in the far field point part. When the
throat part vibrated at a constant speed 1 m/s over
the entire frequency range, the sound pressure at 180°
off-axis showed the most flat shape. The sound pres-

sure measured at 45 degrees showed a significant re-

90 45 10,960 Hz

180 |- ! 0

210,

270

Fig. 17 Directivity pattern at 10 960 Hz for short cone
horn, 3429 nodes model, 0 means on-axis, from
throat to mouth, and it shows dip at 45°.

90 g0

0 16,360 Hz

270

Fig. 18 Directivity pattern at 16 360 Hz for short cone
horn, 3429 nodes model, 0 means on-axis, from
throat to mouth
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duction in sound pressure at 10 960 Hz. The reason
was that the sound radiation pattern at 10960 Hz
(Fig. 17) showed dip due to acoustic radiation char-
acteristics at 45 degrees. In this Section, 361 field
points was used to calculate sound pressure levels at
field points, which one point was the nearest point
at the throat center and points on the circle with ra-
dius 1 m centered at throat area center was divided
by 1° step. Fig. 18 showed the acoustic radiation di-
rectivity pattern of the short cone horn calculated
using the sound pressure data calculated at 360 field
points for 16 360 Hz. A postprocessing program writ-
ten in MATLAB® language was used to plot direc-
tivity pattern.

6. Conclusions

High performance acoustic direct BEM was sug-
gested from a traditional acoustic direct BEM pro-
gram using a hybrid method combined CPU and GPU
libraries. When the input acoustic impedance analysis
for short cone horn modeled with 21 287 nodes was
performed, the calculation time was about 300 times
faster in the solving part than in the BEM codes
using LINPACK library presented by Wu. Ignoring
the differences in the computer used, the result was
46 000 times faster than the Kirkup’s analysis result®
of the BEM problem with a similar number of ele-
ments. Also, when the operation of the unnecessary
part of the formation part was improved, the total
analysis time was totally 20 times faster than the
BEM codes proposed by Wu''?. In the case of one
frequency on 24 728 elements, the solving part took
2.75 seconds, and the total analysis time was only
48.8 seconds, so it took about 3 hours to calculate
the input acoustic impedance of the short cone horn
for 200 frequency cases. If data racing problem could
be surmounted in the formation part with multi-CPU
or GPU operations, faster BEM codes may be sug-
gested in near future. It may be one of the research
topics to be tackled in the future. The coefficient ma-
trix of the system equation was dense and asymmetric,
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so it was solved by using the direct solution method
in this papers. Many researchers have been studied
the applications to iterative solution methods of BEM.
But, it still may be another research fields to estimate
effectiveness of iterative methods and direct methods
of direct BEM.
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ABSTRACT

This paper evaluates the NVH characteristics of an air compressor for fuel cell electric vehicles
(FCEVs) by conducting experimental as well as on-road tests. For the experiment, five eddy-current-type
displacement sensors measured the vibration amplitudes of the shaft at the impeller and thrust runner
ends, one three-axis accelerometer measured the acceleration of the compressor housing, and one micro-
phone placed 1 m away from the test air compressor measured the acoustic pressure during rotor speed-up
and coastdown up to 100 k r/min. For the on-road test, the air compressor was installed under the stack
frame of a proto-type FCEV. The stack frame supports a fuel cell stack and is fixed on the sub-frame
of the FCEV. In addition to five eddy-current-type displacement sensors and one three-axis accelerometer
installed in the air compressor housing, two three-axis accelerometers installed on the stack frame and
the sub-frame measured their accelerations during FCEV speed-up and break-down up to 115 km/h. One
microphone installed 30 cm behind the air compressor recorded the acoustic pressure. All measured dis-
placements, accelerations, and acoustic pressures were analyzed in the frequency domain. The test results
revealed that the air compressor has the highest rotor vibrational amplitude and housing acceleration at
the maximum rotor speed of 100 k r/min. However, the vibrations of the air compressor are well damp-
ened while transmitteed to the sub-frame of the FCEV.
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Fig. 2 Schematic view of air compressor rotor

Table 1 Design parameters of rotor for air compressor

Rotor mass (g) 691

Rotor journal diameter (mm) 25
Rotor axial length (mm) 198
Moment of inertia (polar) (g-m?) 0.117
Moment of inertia (transverse) (g-m?) 1.839
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Fig. 4 Photo of air compressor test set up for speed-up
and coastdown tests
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ABSTRACT

This study investigates the ultrasonic transmission and reception characteristics of an ultrasonic sensor
combined with a horn guide to improve its acoustic directivity. Because an ultrasonic sensor with better
directivity can measure longer distances, the purpose of this study is to determine the length and angle
in the design of a horn guide to be combined with an ultrasonic sensor, which provides the best trans-
mission and reception directivity. Finite element analysis and experiments were conducted to evaluate the
ultrasonic transmission and reception characteristics of the horn guide. For the sensor with a driving fre-
quency of 30 kHz, angles of 10°, 20°, and 30° and lengths of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm
of the horn guide were considered. The commercial program ANSYS was used for sound pressure anal-
ysis and the results provided the axial sound pressure level and the beam pattern of the ultrasound at a
specified distance from the sensor according to the horn guide geometry. In the experiment, the ultrasonic
sensor with horn guide transmitted ultrasounds and measured the sound pressure of the ultrasounds re-
flected from a cylindrical wall. The results of the finite element analysis and the experiments showed that
horn guides with an angle of 20° and a length of 50 mm exhibited the best transmission and reception
performance. Experimental results of the ultrasonic sensor with a horn guide of this dimension were com-
pared with the case without the horn guide, and it was confirmed that the angle of the nodal plane in

the beam pattern was reduced by as much as 30 %, and thus the acoustic directivity was improved.
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Table 1 Sound pressure and sound pressure level at
0.3 m in the central axis (angle 20°)

Horn guide length | Sound pressure Sound pressure
(mm) (Pa) level (dB)
10 87.2 129.8
20 108.4 131.7
30 169.7 1357
40 251.8 139.0
50 331.1 141.4
No horn 108.0 131.6
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length 50 mm)

Table3 Sound pressure and sound pressure level at

Hom guide length Beamowi dth Directiviy Dircctivity 0.3 m in the central axis (length 50 mm)
(mm) O index (dB) Horn guide length | Sound pressure Sound pressure
10 49.7 7.5 8.8 (mm) (Pa) level (dB)
20 9.0 11.9 10.7 10 301.8 140.6
30 7.7 33.8 15.3 20 331.1 1414
40 7.0 67.6 18.3 30 273.2 139.7
50 6.5 97.0 19.9 No horn 108.0 131.6
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Table 4 Beamwidth, directivity, and directivity index
according to horn guide angle (length 50 mm)

Horn g(uni];i;le) length Bear?v)vidth Tttty Eg:;:tl(\g]tg};
10 11.0 91.3 19.6
20 6.5 97.0 19.9
30 5.7 69.1 18.4
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Fig. 15 Configuration diagram of transmission test instru-
ment
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ABSTRACT

Severe pyroshock can cause failure of mounted electronic equipment used in various space missions.
To prevent this problem, it is important to predict the propagation path and attenuation of shock in
space structures. In the case of a honeycomb sandwich panel, which is widely used in satellites, an insert
is used in essential to connect with other structures and the shock wave propagates through this insert
system. In this study, the shock attenuation performance of a honeycomb sandwich panel insert system
is measured by a shock propagation experiment. Modeling and finite element analysis techniques for
such a honeycomb sandwich panel with an insert system are introduced. The results of the experiment
and analysis are compared.
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ABSTRACT

This paper analyzes the results of the estimated uncertainties of air-borne noise and structure-borne

noise. The test results include the measurement uncertainties, which are used for validation. A mathe-

matical model with various measurement uncertainty factors is required to provide more accurate test

results. The contribution of each element to the measurement uncertainty was analyzed and the char-

acteristics of the measurement uncertainty with frequency variation were investigated.
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Table 1 Airborne noise uncertainty at 31.5 Hz
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Table 3 Airborne noise uncertainty at 125 Hz

Type| Ve |uncerisinty |soeticien | Contribution | Ratio  Type|FERCEd) TTE, | cetfeions| Contribution | Ratio
AP,.s| 0.000 0.003 1.000 0.003dB | 0.0% APyes| 0.000 0.003 1.000 0.003dB | 0.0%
Vi | 0.687 0.009 12.635 0.114dB | 63.7% Vi | 2266 0.071 3.833 0.273dB | 93.3%
Vea | 45.306 0.022 0.192 0.004dB | 0.1% Vea | 45.306 0.022 0.192 0.004dB | 0.0%
Sy | 44.005 0.306 0.197 0.060dB | 18.0 % Sy | 44.875 0.208 0.194 0.040dB | 2.0%
Sear | 45.290 0.210 0.192 0.040dB | 8.0% Sear | 45.290 0.210 0.192 0.040dB | 2.0%
P 0.997 0.005 8.715 0.045dB | 10.1% P 0.997 0.005 8.715 0.045dB | 2.6 %
Confidence level 95 % Confidence level 95 %
Coverage factor k=2 Coverage factor k=2
Combined standard uncertainty 0.14 dB Combined standard uncertainty 0.28 dB
Degree of freedom 27 Degree of freedom 12
Test result 57.6 dB Test result 67.9dB
Expanded uncertainty 0.3dB Expanded uncertainty 0.6 dB

Table 2 Airborne noise uncertainty at 63 Hz

Table 4 Airborne noise uncertainty at 500 Hz

Type| Ve |uncerisity |socticien Contribution | Ratio  Type|PRRCEd) TATEtt, | cefeions| Contrbution | Ratio
AP,.s| 0.000 0.003 1.000 0.003dB | 0.0% AP,.| 0.000 0.003 1.000 0.003dB | 0.0%
Vi | 1.403 0.055 6.192 0.341dB 953 % Vi | 3277 0.087 2.651 0.272dB |91.0%
Vea | 45.306 0.022 0.192 0.004dB | 0.0% Vea | 45.306 0.022 0.192 0.004dB | 0.0%
Sy | 44.514 0.232 0.195 0.045dB | 1.7% Sy | 45290 0.2108 0.192 0.040dB | 2.7%
Seal | 45.290 0.210 0.192 0.040dB | 1.3% Seca | 45.290 0.210 0.192 0.040dB | 2.7%
P | 0997 0.005 8.715 0.045dB | 1.7% P | 0997 0.005 8.715 0.045dB | 3.5%
Confidence level 95 % Confidence level 95 %
Coverage factor k=2 Coverage factor k=2
Combined standard uncertainty 0.35dB Combined standard uncertainty 0.24 dB
Degree of freedom 12 Degree of freedom 14
Test result 63.7dB Test result 71.1dB
Expanded uncertainty 0.7 dB Expanded uncertainty 0.5dB
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Table 5 Airborne noise uncertainty at 2000 Hz

Table 7 Structureborne noise uncertainty at 10 Hz

Estimated| Standard |Sensitivity

et value |uncertainty |coefficient Cleictinlonritont | 100

AA,.| 0.000 0.003 1.000 0.003dB | 0.0%

Vi | 0.010 0.001 872.206 | 0.542dB |96.9 %

Vea | 10.134 0.014 0.857 0.012dB | 0.0%

Sy 0.992 0.006 8.756 0.006dB | 0.0 %

Sear | 1.004 0.007 8.651 0.056dB | 1.0%

A 10.040 0.090 0.865

0.078dB | 2.0%

Confidence level 95 %
Coverage factor k=2
Combined standard uncertainty 0.55dB
Degree of freedom 11
Test result 59.7dB
Expanded uncertainty 1.2dB

Table 8 Structureborne noise uncertainty at 31.5 Hz

Estimated| Standard |Sensitivity

Estimated| Standard |Sensitivity

Type| ™ Value uncertainty |coefficient Comiribuiion | R Type| ™ alue uncertainty | coefficient Comialion) [
AP,.s| 0.000 0.003 1.000 0.003dB | 0.0% AA,.| 0.000 0.003 1.000 0.003dB | 0.0%
Ve | 1.103 0.023 8.572 0.196 dB | 87.8% Vi | 0.459 0.009 18.923 0.170dB | 753 %

Vear | 45.306 0.022 0.192 0.004dB | 0.0%

Vea | 10.134 0.014 0.857 0.012dB | 0.4%

Sy | 44.310 0.205 0.196 0.040dB | 3.7%

Sy 1.011 0.007 8.591 0.007dB | 0.1 %

Sear | 45.290 0.210 0.192 0.040dB | 3.7%

Sea | 1.004 0.007 8.651 0.056dB | 83%

P 0.997 0.005 8.715 0.045dB | 4.7% A 10.040 0.090 0.865 0.078dB | 15.9%
Confidence level 95 % Confidence level 95 %
Coverage factor k=2 Coverage factor k=2

Combined standard uncertainty 0.21 dB Combined standard uncertainty 0.20 dB
Degree of freedom 14 Degree of freedom 22

Test result 60.9 dB Test result 93.2dB

Expanded uncertainty 0.5dB Expanded uncertainty 0.5dB

Table 6 Airborne noise uncertainty at 8000 Hz

Table 9 Structureborne noise uncertainty at 63 Hz

Estimated| Standard |Sensitivity

Uy value |uncertainty |coefficient Comndbuiion | R

Estimated| Standard |Sensitivity

Type value |uncertainty |coefficient Contribution | Ratio

AP,.| 0.000 0.003 1.000 0.003dB | 0.0%

AA,.| 0.000 0.003 1.000 0.003dB | 0.0%

Vi | 0931 0.028 9.328 0.259dB | 92.6 %

Vi | 0335 0.016 25.909 0.409dB | 94.6 %

Vear | 45.306 0.022 0.192 0.004dB | 0.0 %

Vea | 10.134 0.014 0.857 0.012dB | 0.1 %

Sr | 32.659 0.151 0.194 0.040dB | 2.2%

Sy 1.010 0.007 8.600 0.007dB | 0.0%

Seal | 45.290 0.210 0.192 0.040dB | 2.2% Sea | 1.004 0.007 8.651 0.056dB | 1.8%
P 0.997 0.005 8.715 0.045dB | 2.8% 4 | 10.040 0.090 0.865 0.078dB | 2.6 %
Confidence level 95 % Confidence level 95 %
Coverage factor k=2 Coverage factor k=2
Combined standard uncertainty 0.27 dB Combined standard uncertainty 0.28 dB
Degree of freedom 12 Degree of freedom 12
Test result 60.2 dB Test result 67.9dB
Expanded uncertainty 0.6 dB Expanded uncertainty 0.6 dB
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Table 10 Structureborne noise uncertainty at 125 Hz

Type|™Vahue | uncenainty |sooMiieny| Conribution | Ratio
AA,| 0.000 0.003 1.000 0.003 dB | 0.0%
Vi | 4.518 0.075 1.922 0.145 dB | 68.8%
Vea | 10.134 0.014 0.857 0.012 dB | 0.5%
Sy 1.004 0.007 8.651 0.007 dB | 0.1 %
Sea | 1.004 0.007 8.651 0.056 dB | 10.5%
A | 10.040 0.090 0.865 0.078 dB |20.1 %
Confidence level 95 %
Coverage factor k=2
Combined standard uncertainty 0.18dB
Degree of freedom 28
Test result 113.1dB
Expanded uncertainty 0.4 dB

Table 11 Structureborne noise uncertainty at 500 Hz

Type| Vit unceriinty |soeMiieny| CoMtributon | Rao
AA,| 0.000 0.003 1.000 0.003dB | 0.0%
Vi | 0.419 0.025 20.743 0.509dB | 96.5 %
Vea | 10.134 0.014 0.857 0.012dB | 0.1%
Sr | 0.989 0.006 8.783 0.006dB | 0.0 %
Sear | 1.004 0.007 8.651 0.056dB | 1.2%
A | 10.040 0.090 0.865 0.078dB | 2.3 %
Confidence level 95 %
Coverage factor k=2
Combined standard uncertainty 0.52 dB
Degree of freedom 12
Test result 92.2dB
Expanded uncertainty 1.1dB

Table 12 Structureborne noise uncertainty at 2000 Hz

Type| Vil |unceriinty |soeMiieny| CoMtributon | Raio
AAe| 0.000 0.003 1.000 0.003dB | 0.0%
Vi | 0.160 0.016 54.290 0.849dB | 98.7 %
Vear | 10.134 0.014 0.857 0.012dB | 0.0%
Sr | 0.981 0.009 8.855 0.009dB | 0.0%
Sear | 1.004 0.007 8.651 0.056dB | 0.4 %
4 | 10.040 0.090 0.865 0.078dB | 0.8%
Confidence level 95 %
Coverage factor k=2
Combined standard uncertainty 0.86 dB
Degree of freedom 11
Test result 83.6 dB
Expanded uncertainty 1.8dB

315 Hz 63 He 125 He 250 He 500Hz  1000H  2000Hz  4000H:  BOODHz

S Airborne Noise [dB] W Uncertainty of Airborne Noise [dB]

Fig. 1 Uncertainty of airborne noise
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Fig. 2 Uncertainty of structureborne noise
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ABSTRACT

The finite element method (FEM) and the statistical energy analysis (SEA) are widely used in the nu-
merical analyses of structural vibrations. However, these two methods are limited in that they cannot be
applied at high frequencies. In order to overcome this problem, an alternative approach, called energy fi-
nite element analysis (EFEA) has been proposed, which is based on power flow analysis (PFA). Because
EFEA is the numerical version of a PFA, it is necessary to validate PFA for various structures in order
to understand the features of an EFEA. In this study, two different solving approaches (Levy-type and
hybrid approaches) of the PFA method are investigated for coupled plates. The predicted results are va-

lidated by a comparison with those obtained using the plate theory.
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Table 1 Properties and dimensions of coupled plates

Force (F, N) 1
Young’s modulus (£, GPa) 200
Density (p, kg/m?) 8000
Poisson’s ratio (v) 0.3
Loss factor (1) 0.1
Plate 1 length (I,1, m) 1
Plate 2 length (2, m) 1
Plate width ({,, m) 1
Thickness 1 (h;, m) 0.001
Thickness 2 (hz, m) 0.002
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ABSTRACT

This paper presents a transfer matrix method to accurately determine the natural frequencies and
mode shapes of the free vibration characteristics of a rotating Bernoulli-Euler beam with an elastic
boundary condition (EBC) at its root. The proposed method can accurately determine the desired number
of natural frequencies for such problems using a single element. The EBC is modeled for translational
and rotational springs, and its effects are expressed in an independent transfer matrix. Structures with an
EBC are altered according to the structures with other various conditions by appropriately controlling
the stiffness values of the springs. The roots of the differential equation are solved for a bending vi-
bration by applying the Frobenius method. In addition, the variation in mode shape depending on the
change in the stiffness of springs is investigated in detail.
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Table 1 Comparison results on the first four non-dimensional natural frequencies of rotating beams with the fixed
free end condition when 7, =0 and 1

Non-dimensional natural frequency

7 o) o 5 5
Present Exact Present Exact Present Exact Present Exact
(@ ry;=0
0 3.5160 3.5160 22.0345 22.0345 61.6972 61.6972 120.9019 -
1 3.6816 3.6816 22.1810 22.1810 61.8418 61.8418 121.0509 -
2 4.1373 4.1373 22.6149 22.6149 62.2732 62.2732 121.4967 -
3 4.7973 4.7973 23.3203 23.3203 62.9850 62.9850 122.2355 -
4 5.5850 5.5850 242733 242733 63.9668 63.9668 123.2615 -
5 6.4495 6.4495 25.4461 25.4461 65.2050 65.2050 124.5664 -
6 7.3604 7.3604 26.8091 26.8091 66.6839 66.6839 126.1405 -
7 8.2996 8.2996 28.3341 28.3341 68.3860 68.3860 127.9722 -
8 9.2568 9.2568 29.9954 29.9954 70.2930 70.2930 130.0490 -
9 10.2257 10.2257 31.7705 31.7705 72.3867 72.3867 132.3576 -
10 11.2023 11.2023 33.6404 33.6404 74.6493 74.6493 134.8841 -
®) Ty=1

0 3.5160 3.5160 22.0345 22.0345 61.6972 61.6972 120.9019 -
1 3.8888 3.8888 22.3750 22.3750 62.0431 62.0431 121.2632 -
2 4.8337 4.8337 23.3660 23.3660 63.0675 63.0675 122.3395 -
3 6.0817 6.0817 24.9277 24.9277 64.7338 64.7338 124.1090 -
4 7.4750 7.4750 26.9573 26.9573 66.9868 66.9868 126.5373 -
5 8.9404 8.9404 29.3528 29.3528 69.7607 69.7607 129.5803 -
6 10.4439 10.4439 32.0272 32.0272 72.9863 72.9863 133.1875 -
7 11.9691 11.9691 349116 349116 76.5964 76.5964 137.3049 -
8 13.5074 13.5074 37.9538 37.9538 80.5295 80.5295 141.8780 -
9 15.0541 15.0541 41.1154 41.1154 84.7315 84.7315 146.8540 -
10 16.6064 16.6064 44.3682 44.3682 89.1563 89.1563 152.1832 -

Table 2 The first four non-dimensional natural frequencies of rotating beams with the pinned-free end condition

Non-dimensional natural frequency

0 ;H: 0 ;H: 1
o o o o, o o 3 o,
0 0.0000 15.4182 49.9649 104.2477 0.0000 15.4182 49.9649 104.2477
1 1.0000 15.6242 50.1437 104.4202 1.5806 15.9161 50.4068 104.6765
2 2.0000 16.2261 50.6760 104.9358 3.1586 17.3179 51.7069 105.9511
3 3.0000 17.1807 51.5498 105.7890 4.7333 19.4142 53.7937 108.0370
4 4.0000 18.4313 52.7463 106.9708 6.3056 21.9897 56.5662 110.8810
5 5.0000 19.9197 54.2419 108.4691 7.8765 24.8804 59.9120 114.4162
6 6.0000 21.5944 56.0099 110.2695 9.4467 27.9770 63.7221 118.5685
7 7.0000 23.4133 58.0223 112.3555 11.0166 31.2103 67.9002 123.2611
8 8.0000 25.3436 60.2513 114.7094 12.5865 34.5373 72.3664 128.4200
9 9.0000 27.3601 62.6705 117.3126 14.1563 37.9304 77.0570 133.9761
10 10.0000 29.4439 65.2554 120.1464 15.7263 41.3720 81.9224 139.8677
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ABSTRACT

In this study, we identified the noise sources of an in-wheel motor system and proposed a low-noise
design guideline through structural modification. To identify the noise sources, we not only measured
the noise and vibration signals, but we also performed modal testing. Using waterfall plots for the fre-
quency spectra of noise and vibration signals, we identified the vibration excitation frequencies owing to
the gear mesh and the motor electromagnetic force of the motor. We obtained the natural frequencies of
the in-wheel motor system from the modal test results. The results of the signal analysis and modal test
showed that noise was generated by the resonance between the excitation and natural frequencies. To
avoid this resonance, we proposed a design guideline for noise reduction in an in-wheel motor system
by using a finite element simulation.
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ABSTRACT

This study provides an appropriate estimation equation for outdoor transmission noise while manufactu-
ring noise maps or predicting the noise of surrounding regions during a performance at an outdoor performance
hall. By utilizing a commercially available program Cadna-A, values predicted using three equations, ISO-
9613, VDI-2714, and CONCAWE, are compared with values measured at an actual outdoor performance hall
located on a flat ground, wherein signal attenuation due to woodlands, buildings, and barriers is compara-
tively less. The compared positions are located at directivity angles of 0°, 45°, 90°, 135°, and 180°, all at
a distance of 15 m from the stage. As a result, the values predicted using the ISO-9613 and CONCAWE equa-
tions agree well with the actual values and are within a 5 % error rate; however, the values predicted using
the VDI-2714 equation are not. The correction value of direction indexes and surrounding barriers of the
hall using the VDI-2714 equation is estimated to be greater than those obtained using the other equations.
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Table 1 PWL value of the point (0°) at 15 m distance
from the front stage (dB)

63 125 | 250 | 500 1 2 4 8
Hz Hz Hz Hz kHz | kHz | kHz | kHz
100.5 | 103.6 | 99.5 | 105.9 | 112.5 | 107.4 | 101.8 | 98.7
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Table 2 Directivity Index of sound source considering
the effect of surrounding conditions at stage

63 | 125 | 250 | 500 1 2 4 8
Hz | Hz | Hz | Hz | kHz | kHz | kHz | kHz

0° 0 0 0 0 0 0 0 0
45° 1 02 | 13 | 74 | 44 | 29 | 72 | 41 | 46

90° | 3.8 | &5 | 75 | 05 9 122 ] 125 | 19.2
135° | 157 65 | 3.1 | 42 | 145 23.1 | 21.9 | 247
180° | 209 | 15 | 7.5 | 16.6 | 31.6 | 344 | 34 | 378

Table 3 Outline of building around the outdoor perform-

ance hall

Name of building Floor Iéf)ifrhar?)f heigl)ltta(lm)
GIST, A building 3 3 9
GIST, B building 4 3 12
GIST, C building 9 3 27
GIST, D building 4 3 12
GIST, E building 3 4 12
Design center 6 3 18
Industry campus of CHU 4 3 12
Hospital building 9 3.5 31.5
Gwangsan-gu exper. building| 3 3 15
Donga Apart. housing 5 2.6 13
Ssangyong Apart. housing 5 2.6 13
Moa Apart. housing 15 2.6 39
Byeogsan Apart. housing | 15 2.6 39
Geumgwang Apart. housing [ 15 2.6 39
Dongbu Apart. housing 15 2.6 39
Ilsin Apart. housing 12 2.6 31.2
Jeongam elementary school | 4 3.6 14.4
Bia middle school 5 3.6 18
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Table 4 Comparison of the measured value and pre-
dicted value by using the ISO-9613

Measurement Measured Predicted Error value
point value (dB) value (dB) | (error rate)
0° (front stage) 85.7 86.5 +0.8 (0.9 %)
45° 85.5 83.8 -1.7 (1.9 %)
90° 81.5 79.4 -2.1(2.5%)
135° 75.6 74.1 -1.5(1.9 %)

180° 69.6 66.8 2.8 (4 %)

"Error rate = [(predicted value —measured value)
/ measured value] x 100
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Table 5 Comparison of the measured value and pre-
dicted value by using the VDI-2714 (dB)

Measurement Measured Predicted | Error value
point value (dB) value (dB) | (error rate)
0° (front stage) 85.7 90.0 +4.3 (5 %)
45° 85.5 88.2 +2.7(2.3 %)
90° 81.5 85.3 +3.8 (4.7 %)
135° 75.6 82.1 +6.5 (8.6 %)
180° 69.6 79.2 +9.6 (13.8 %)

“Error rate = [(predicted value — measured value)
/ measured value] x 100

Table 6 Comparison of the measured value and pre-
dicted value by using the CONCAWE (dB)

Measurement Measured Predicted Error value
point value (dB) value (dB) | (error rate)

0° (front stage) 85.7 90.6 +4.9 (5.7 %)
45° 85.5 88.9 +3.4 (3.9 %)

90° 81.5 83.4 +1.9 (2.3 %)

135° 75.6 77.5 +1.9 (2.5 %)

180° 69.6 71.8 +2.2 (3.1 %)

“Error rate = [(predicted value —measured value)
/ measured value] x 100
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(3) The manuscript should be organized in the following order: (1) Title (2) Name(s) of author(s) and his/her
(their) complete affiliation(s) (3) Key words (4) Abstract (5) Nomenclature (6) Introduction (7) Main body (8)
Conclusion (9) References (10) Appendices.
=1 AAE vl mES dFoz St () AE ) AR (3) F7]EE0l(key word) (4) ZF (5)
7134 () 2 () EE ) 22 ) FuEd (1055 5

(4) The title should be concise and consist of Korean and English titles. The name of authors should also consist
of Korean and English names.
wwl] AES ASA FAEH S FEAES B8 AEE S Jees WPtk

(5) The abstract should be written in Korean and English not exceeding 600 characters or 250 words.
258 Foj9h Joj= ZH7f 6004} Hi 250k WSl 2 s

(6) The number should be written in Arabic numeral and the SI unit system should be used.
SARE ofEH]of A ARSI, ¥ @9l H=E S T9E AR ST

(7) Tables and figures of the paper should be arranged in order and inserted into the main body. The title and
content of table and figure should be written in English.
e F ® A" s e T shdel] Aol olal Abslsk, 1 AlEY 82 dolz 3719
= 9¥5ow Jnh

(8) Use the following formats for journal articles and books as References.
o] e A7IRIEAY e AR, @b, AlEE, A, d-sWe, HolA s sow 7
abar, welie] Ae-w AR, Wb, AW, AW SWAM, SRARRAAY, T4, delAWEsoR 7
e, 1 AN-E EEue] 8T sow vEdt e eyor BE wnd dEow VAeh, 8l
17 o2 =g Ea 3t gl A= Fk
(1) Cooley, J. W. and Tukey, J. W. 1965, An Algorithm for the Machine Calculation of Complex Fourier Series,

Mathematics of Computation, Vol. 19, No. 4, pp. 297~308.
(2) Meirovitch, L., 1980, Computational Methods in Structural Dynamics, Sijthoff and Noordhoff, Maryland, chap. 5.

(9) References should be cited as follows.
el Ay Q182 vt o] gtk
(1) Lee and Park®---
(2) ... solved by the Rayleigh-Ritz method®.

(10) The original paper should contain names(both in Korean and English), affiliations, the name of corresponding
author including address, phone number, fax number and email address.
AiF EEEIA =R ARG, A A L 25 A, AKEAL B FAA
<A AHA> Z Corresponding Author)®] 24 % ASPHS(FAX. ¥3), Bmail T2 HE3] 7|A|gch

(11) The final manuscript accepted for publication should be submitted to the editor office through the society web
site.
AL F AE AR =RUnE 8 Fo A EER AL B o) AT AZ,
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Title of the manuscript | =2 A5 :

-y

O o o O

anms

Transactions of the Korean Society for Noise and Vibration Engineering

Checkiist for Original Article | M XFHA =

Please check below items as  mark before submission of the manuscript. | 2 3458 210/5t1 /FAIE SFHAL.

General guidelines | &1 2tk

Manuscript contained (D one original manuscript, @ statement of copyright transfer, (3 Checklist for Original Article and was
attached. | 91 @ A& 147, @ AR Y= FIA, @ AAHHREE AFsI=7R

Manuscript should follow the format (can be downloaded from the web site). The paper can be typed with HWP or MS-Word.
| R o 74 Al 2R 99 58] R FYEAIANN R0 oI5 hwp T MSword= AgEIETR
The manuscript should be organized in the following order: (1) Title (2) Name(s) of author(s) and his/her (their) complete af-
filiation(s) (3) Key words (4) Abstract (5) Nomenclature (6) Introduction (7) Main body (8) Conclusion (9) References (10)
Appendices. | =72] AAE (DAE, AR, 3)F27E 80l key word), HEZ, (571341, GHE, (NEE, 8)2
2, 9FEd, (10) 75 58 usgeErR

Main text consisted of introduction, subjects and methods, and results and discussion in separate pages. | 22 A&, A
5w, Ak 13e Existel TAsgE

The paper should be written in Korean. However, the original terminology can be typed side by side with parathesis to avoid
confusion. The loanword orthography follows the government guideline. | t&-80j= Foj2 ZHAss AL YHOo 7 3lal,
oqule] E5o] UL A ()l dolz Wrialen, o] H7)e Ayt waer

Cover page | EX|

Title, name of authors, affiliation was described both in English and in Korean. | ¥#]o= =82 A&7} E Axpy o
2%4S T GEOR V|EIR P

In lower area of cover page, the name, address, email, telephone, fax of the corresponding author were described. | 4] dhk
o AR AR, 2%, Fa U AACAS, B, Emailta)E B8 7 ASAETR

. Abstract | =5

The abstract should be written in Korean and English not exceeding 600 characters or 250 words. | 252 =roje} Joj= 7}
7y 6007F K= 25010 RS vlellA 2HgstiETle

. Madin text | 22

[0 Main text was written in order of introduction, main body(include Figure, Table), conclusion. | 2] =M ME, E2(H,

O

O Oooogde

oooe

a7, AR5 usErp
References should be cited as follows. | &0 €183 FuEFE = FFoao] vhHS F5319 =71

References | 2128

Every articles in references were cited in the main text. | 250 91-&5o] Q=712

References were numbered according to numeric order. | FEH-2 A-&H AR (1), (2), Q)22 HZeAE=7R

All references were written in English. | 3 153-& 25 gFE- o2 %7|59E7R

The paper from “Transactions of the Korean Society for Noise and Vibration Engineering” was cited if the content is relevant.
| GG EE =it el F5E Fde A8 Aol =k

Use the following formats for journal articles and books as References. | F15-3 2 =81 FAH(H7|7H&EA -
AR, dxhd, AEY, A9, @593, dolX e &/ e - Az, wrhd, MY

AAE, =A, HoAMEF) S FF8IET

2

Tables and figures | 2} O8

Titles and legends of tables and figures were written in English. | 25 39} 239o] A&y} e JEoz A=
Figures were in required format. | AFA-& A&7 340 @A HER AEF3RE71

Tables and figures of the paper should be arranged in order and inserted into the main body. | ¥ % 132 g Aet
e el Al i ATk
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Korean Society for Noise and Vibration Engineering
Research Ethics and Ethics Committee Regulations
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(Purpose) This provision is subject to the code of ethics of the Korean Society for Noise and Vibration
Engineering(KSNVE), which publishes and presents academic activities such as research ethics and the establish-
ment of relationships in KSNVE. The purpose of this document is to set forth the terms of the research ethics

committee for operational sanctions.

(B ¥ e RESAETH)S S e Brhel fe@gel wek Sl w3 RE 5
SegEn PAHE Araael B9 AveE FRA9e owi PE A4 A9 Araeeas

(elst “91dse} gy I ol Bk AFS TS BAoR f&ﬂ}.

(Configuration and Functions) (D The committee shall be composed of one chairman, one secretary, and five
committee members. (2) Chairman and members shall be elected by the board of directors and appointed by the
KSNVE president. (3 The terms of the chairman and members are two years, and both can be reappointed. @
The chairman shall represent the committee and oversees the work of the ethics of the KSNVE.

@195 T4 L 4% O A9 A998 193 4 19, 99 sHow PR @ 999 2 94
& oAEe AEa B4de] duh ® S194 % A19e] Ar)t 2dow Sn AW 4 Ak @
A9Fe AR hEsha )9l ol B I FRUL

(Function) The committee shall work with the following contents: (1) Research and prosecute established ethics,

-

(2) Prevent and contain research misconduct, (3) Research misconduct deliberation and voting, (4) Report results
to the board of directors for decisions and sanctions more on cheaters, (5) Provide more details on the im-
provement and promotion of research ethics.

(9319 71%) AA3E Do WoR BEIT. 1) AFae £9 2 R 2) AT TP ey
g, 3) AT RAAS) Aol D o7 4) LA I AANE AY D oAl Aspn, )
7} 7 gelel A B A B AR

(Convening and Voting) (D The committee shall be convened as necessary by the chairman. The vote in favor
of 2/3 of registered members. (2) The details that have passed the vote shall be notified to the suspect of mis-
conduct (defendant) and the defendant's opinion must be received as a written plea within 10 days. @ The
committee shall review the explanatory materials received from the person suspected of misconduct. The ever
need to listen to your thoughts when the final vote. @ The details that have passed the vote shall be reported
to the board of directors to reach a final decision. (& When judged necessary, the chairman may listen to com-
ments from outsiders or non-members. ® The presented details of attendees or the details of meeting from the
committee shall be kept confidential as a general rule.

(193 23 2 7)) @ A= A9Fo] Ao we Me}uﬂ, AH99 230 Ao :
@ 948 WEe FARY GG AdAhlA Fuskan 109 olfe] AHCE 27 oA Wolol
At @ AN PR JAARIE L mz}:{% e/ "anl g PHs] HF
JEAES Fth @ ojZd W& oAkl Halste] HF ZAAIY. © o] Aesiva g 7
T, 95 QAR filo] opd Ao oS HFHE vk ® ALl FrEA EF UG H g2

ELu[U
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(©)

™

HgIlE 9o gt
(Scope of Research Publication Misconduct) (D "Plagiarism” refers to the act of theft without quoting such in-
formation or the results of the research of others without revealing the source. (2) "Falsification" or "alteration”
is the use of another person's or one's own research results of operations or strain, says the act of distortion.
@ "Duplicate publication" stands for the act of publishing the same details in two or more journals. @
"Wrongful inscription of author" stands for the action of putting on someone who has not contributed to the re-
search as an author. (8 Others say the unacceptable range.
(A% Fg39le] W9l @ 34 o] FAE WA &2 A Bl Aqrugoly A 55 <l
2 i E8shs d9E Witk @ «9x 9 Wz @ gRloly Apr] Apale] dAgatm Avke] Fzlo]
i, di=rele g9E ek O “olTAIA & 270 oo skEAlel U7 W8S AAee d
wect @ <FFe AR @ Al T]ofsA @ AE AR SEs g9E with © 71 &
o jle HeE EEh
(Informing and Notifying Research Misconduct) (D The contents of research misconduct are limited to the pub-
lications "Journal of KSNVE" and "Trans. Korean Soc. Noise Vib. Eng." (2) The report of research misconduct
must be submitted in writing accompanied by the relevant data in accordance with the five W's and one H. 3
The committee then received a report that information within three months of deliberations to finalize the report
to the board of directors. @ The final content as determined by the board of directors shall notify the in-
formant and the malfeasant within 10 days and posted on the KSNVE homepage. (& The end result regarding
the misconduct should not be released to the public before finalized.
(A7 AR AR 2 FR) O A7 FAB W2 duasglEedd)=id A (s -
ol e R el @ AT TN ARE et wet v AuE FF-eke] AW
oz AEstolof Fth. @ HAU3= AwIt A 5 370 ol Aol W8S gAste] ojalgle] walst
oo} gtk @ o3|l A HFE AAE W& 104l ARAe} F-gaeitelA] TRk o135 & o]
3l FARIY © A7 FAAA g HATAATE GV doll= 2ol viEo M= ke

(Sanctions for Research Misconduct) (D For authors whose research misconduct has been confirmed, punishment

A&
may be selected to be imposed on each case after being reviewed by the committee and considering the se-
verity of misconduct determined by the committee: 1) Cancellation of publications published by the KSNVE for
the announcement study, 2) Prohibition for five years from contributing "Journal of KSNVE" and "Trans.
Korean Soc. Noise Vib. Eng.", 3) Prohibition for five years from attending the KSNVE Conference, 4)
Notification of the details of misconduct to the institution, 5) Disqualification of society members. @ If a caller
has intentionally and falsely reported a violation, according to the decision of the committee, the committee
may impose the same sanctions and level as described in "Sanctions for Research Misconduct."

(A7 AR gk AA) O A5 Fgo] gRle ARt A= 93] ARl wet B39l A5S
aste] oo AAE dEste] 71k = Qlvh 1) siY TRATE] gk 33 R AAH A 2)
59t stele] =gt ks Ale] FagA]. 3) 5\t 3] skt wRETAL 4) FAPAA 2T
FARe g T8 5) o3 A4 v @ ARAE o2 SRS sile A5 Ad3e] 24

of weh A AW FE BAR ANE A 5 ek

This regulation shall enter into force on October 24, 2008 (enactment)
P S 20081 10€ 24U FE] Al oA A)
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The Charter of Ethics for the KSNVE

BELSTSTE BT

All members of “The Korean Society for Noise and Vibration Engineering” should perceive that our researches
improve the quality of life of human and have a great influence on community. Also we should cherish harmonious
and tranquil life, living together with neighbors and nature. Therefore, all members of KSNVE should have higher

moral sense and behave honestly and fairly to maintain authority, honor and dignity.

FHLSUE T LE U 4] A FPAIN JBBYe] 2 9FS FE AL Qs S
o}% % Az Ho) Abs £ahFL AT A4S £FF oA olo] BE HUe ARARAS ¥
q
o

=
#1941 A A9, Bel, 919 A 5 J=S AHsn 34

sl g a,

1. Authors should use their own knowledge and technology to improve the quality of life of human.
el e el 2 S flste] ARl A4} 7aS ARgStaL 7]ofstefof gt
2. Through the activities of KSNVE, authors should contribute to the development of Noise and Vibration
Engineering and industry and make efforts to promote the public interest for tranquil life. In addition, they
should devote themselves to their field and strive to boost competitiveness and the authority as experts on Noise
and Vibration Engineering.
o= 83 TES E5to] F3 A4S 9 4%
of ghth gk A EE T HiLvtEA Aok
ofof gt}

3. Authors should behave honestly and fairly for education, research and real participation according to their scholas-

=18

o] 0] 25}l
zol7] 98 e}

Jﬁ

o 7]est

AEgska) 4 ol
4 P23 A9

=
A3 BAksa

o, F?-L

tic conscience and ethic.
fele wg, 9T BF Y A% VE 9@ 3

A kAol FAlalo]of F}.

4. Authors should not behave against the purpose of the foundation of the society.
$e)t slo] YA Waka AEsH: AVBES sl ol Hek

5. Authors must not have presented portions of another’s work or data as their own under any circumstances.
e Hole] AT T QRS A4S AT T AAY Eiolh Aol AL ok Hm,
Elole] AT B AR EFslelo gk

6. Manuscripts submitted for consideration for publication in KSNVE are not to be used as a platform for commer-

|

)

2

ofell glol AAsAL TS A se, a4 o

cialism or unjust means.
e AU Deste] ASH ARE olgsle] FHSAY FAAR o5& 7 oA oplHr,
7. Every manuscript received is to be reviewed fairly by reviewer’s conscience as a scholar. And Ethics Committee

deliberate and decide on all matters related to research misconduct.
w=E 0 QTR AN 4RSSk H9e emA s ol uel B AAkstolok gtk

(A7 : 2007. 09. 14, A3 : 2007.11.15)
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Research and Publication Ethics| I T+=TR2|

All members of “The Korean Society for Noise and Vibration
Engineering” should perceive that our researches improve the
quality of life of human and have a great influence on
community. Also we should cherish harmonious and tranquil
life, living together with neighbors and nature. Therefore, all
members of KSNVE should have higher moral sense and be-
have honestly and fairly to maintain authority, honor and

dignity. | #2805 888 o] RE U o A& T

ABER 2 T FE AL A3, T2l ol 2 Aelx
Ho] b 25HERL BEW A4S £33 oAtk ol RE 59

ARARAS B fEoe AT B, Bel, A19S A2
o

A== Y13

o

Authorship | Xt2] 22|2]4|

1) Authors should use their own knowledge and technology to
improve the quality of life of human. | %2 ¢159] ke & &
&E SlEte] ARrle] AAF 7] ARgSkaL 7] efsteiof gtk

2) Through the activities of KSNVE, authors should contribute
to the development of Noise and Vibration Engineering and in-
dustry and make efforts to promote the public interest for tran-
quil life. In addition, they should devote themselves to their
field and strive to boost competitiveness and the authority as
experts on Noise and Vibration Engineering. | -2 3|25
Eato] B3 G 98 ASxEEst Ak el vlolata, &
o] FRlel| w=stoiof gt} EE ASHFFE HETEEA] ARk
o 443] BAKskaL B ALNE Eol7] f18 wste]of il
3) Authors should behave honestly and fairly for education, re-
search and real participation according to their scholastic con-
science and ethic. | $-2]& S, A7 &% 9@ Ay 2@F a8
A ol glo] FAsta TRl Aske, fEdd S F
Aol FAatelof gk

4) Authors should not behave against the purpose of the foun-
dation of the society. | §-2]= st3le] ALA o] wksla &&=
ANHEHE-S stefAlE oh drh

Duplicate Publication of Data | =2 0|F AIX|

Papers should contain new results of original research and aca-
demic contribution to noise and vibration engineering, which
hasn't been submitted or published in any other journals. Also
the published paper to this journal should not be submitted or
published in any other journals. | F=&52] &2 €} ol Far
e ERHA &2 AR ASXlEestd sl HE e 8t
B2 77 e AeR vk daAag s ets=gel AlAd

RS o] F v Aol R E: BEE 39

v

Plagiarism | X

Authors must not have presented portions of another’s work or
data as their own under any circumstances. | E}Ql9] A F%
o] RES Al Ay =1 AXF =Eolu Azl Al
Mz b =, Bljle] At H IS EFatolof gtk

Policy on Commercidlism | 2% 0|5

Manuscripts submitted for consideration for publication in
KSNVE are not to be used as a platform for commercialism
or unjust means. | 17T} BEste] 53 UG o] gt F
G FH-E o5& FsloiAE o€tk

Review | &AL
Every manuscript received is to be reviewed fairly by re-
viewer’s conscience as a scholar. And Ethics Committee delib-

erate and decide on all matters related to research misconduct.
[ = 2 AT Aakel 2HES Sl S @A) SHEA PAld

ue} sl AAslelol ek sk A 3R BaE wE
Age g9zt del % A4

Peer Review | HE7tAL 2P

Every manuscript received is reviewed by the writing guide-
lines and instructions of KSNVE. With editing team’s decision,
three peer reviewers are selected. The editorial director should
ask a review to selected reviewers in 10 days from application
date. The editing team takes responsibility for all general mat-
ters on peer review. If two reviewers among the selected do
agree to accept the journal, review process ends. | 2 7H({ 1 Tl)
P ATl ARt dxse A3 Jded o
Fagee s Fag wEdae oiste] AAeth e =7
dare AHEca AL, Brjolrhel Adstel A& HEs
AYE7E £E =2 A 30 AR, Agugete A
A=HH 104 ool =& AN AFE 2o =S
ojggt. oHust 5 ARl g ARkl Algke dE e
Alstol] =& AlAtel 30% ejFate] =7 A T 291 o]
oS ol HFAA

= The reviewer’s name should not be disclosed during review
process. If reviewers ask for exception, it might be accepted
only under the editing team’s decision. | AAF1€2] A2 tl<]
How vdw e dFow g o, ALY vt ASAl
AEe] Bt gl 97t A 5 AUrk

= If it is necessary during review process, authors and re-
viewers can exchange opinions on the intervention of the edit-
ing team. | ¥=% AL T Zashd HRE FAMEE AL}
AAZ} s mEet 4= 9l

= The period of review is two weeks(urgent papers is within
10 days). If it is over two weeks, reviewers get the first
reminder. And if review is not finished over four weeks, an-
other reviewer would be selected. | AARI oAl FHH =]
AAZIEE 25 olU|(XE=iS 104 oJuh®E 3shH, o] 7|3ke] A
i ARSIl A 13 55 vk AAbelE] §F 457 AuES
AAPATE A el tE el e ® WA g

= The paper can be cancelled if the revised paper hasn't been
returned to the office within one month after the paper was
sent to authors for revision. | U149 4 B3 5o 874 Ui
7 A" e o AREEelA e dEFE 14 ol 3%
HA4 &g Afole Hx Sk

= If the author of the unaccepted manuscript requires review
again, it cannot be accepted. | HFH o2 ANYERE) E7HAT)E
=] As- AR A e A e woled g itk

Content and Publication Type | EESH

An original article, review article and errata/revision/addendum/
retraction can be accepted as a publication type of this journal.
| ¥ =5de] &3 f3o2= A (Original article, Review article),
L5178 73/5 7Y A A 4 3] (Errata/Revision/Addendum/Retraction) 9} -2
TH7F dom ol g3 Fd-S vt dvth

Fee for Page Charge | AIXi3|H|

If the manuscript is accepted for publication, authors of the
paper should provide the paper processing fee(50,000 Won)
and publication fee(General papers : basic 6 pages 100,000
Won, for extra page: 20,000 Won/page, Funding papers : basic
6 pages 150,000 Won, for extra page: 30,000 Won/page, Urgent
papers : basic 6 pages 200,000 Won, for extra page: 40,000
Won/page, Conference papers : free). | +=i-9319] A&} =7
A B8] el wEh Aol =R suked) 2 AIA S]]
(Y¥h=tt - 7]26d 109/ ankel, A9t] A9l 7]E 6
159hel/Zabd e 3nkel, =R - 7] 6 200kl ab s 4kl
St ReE FR)E FEslof stk

>
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