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ABSTRACT

The U.S. Nuclear Regulatory Commission Regulatory Guide 1.20 requires a comprehensive vibration
assessment program to verify the structural integrity of the reactor vessel internals of newly constructed
nuclear power plants for flow-induced vibrations. The comprehensive vibration assessment program main-
ly comprises analysis, measurement, and inspection programs. This paper performs a flow-induced vi-
bration evaluation of the structural integrity of the APR1400 reactor vessel internals by reviewing the
analysis, measurement, and visual inspection results obtained at the Shin-Kori Unit 4 nuclear power
plant. As the analysis data were predicted to be conservatively higher than the measurement data, it
was confirmed that the analysis methodology was developed properly. As the predicted maximum stress-
es of the reactor vessel internals were lower than the allowable stress and the inspection results showed

no indication of defects, the structural integrity of the APR1400 reactor vessel internals was verified.
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latory guide (NRC RG) 1.20 requires a compre-

1. Introduction hensive vibration assessment program (CVAP) for

the reactor vessel internals (RVI) before commercial

The U.S. Nuclear Regulatory Commission regu-  operation of nuclear power plants (NPP). The CVAP

T  Corresponding Author ; Member, KHNP-CRI, Researcher # A part of this paper was presented at the KSNVE 2019
E-mail : doyoung.ko@khnp.co.kr Annual Autumn Conference
*  KHNP-CRI, Researcher i Recommended by Editor Jun hong Park
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should evaluate the structural integrity of the RVI
for steady-state and anticipated transient conditions
that correspond to preoperational startup test, and
. The CVAP consists

of the vibration and stress analysis program, the vi-

normal operating conditions'"

bration and stress measurement program, and the in-
spection program. The vibration and stress analysis
program is to verify theoretically the structural in-
tegrity of the RVI and to provide the basis for se-
lecting the locations monitored in measurement and

inspection programs”

. The analysis program pre-
dicts the hydraulic loads inducing structural vi-
bration of the RVI and the responses of the
internals. The objective of the vibration and stress
measurements program is to obtain sufficient data to
confirm predictions at operating conditions of steady
state and transient. This confirmation requires the
measurement data related to both the hydraulic loads
and the dynamic responses of the RVI®. The in-
spection program checks the integrity of the stress
concentration areas and vulnerable parts after the
hydraulic vibration’. NRC RG 1.20 requires pro-
grams such as analysis, extensive measurement, lim-
ited measurement, or full inspection according to the
RVI configuration. We, Korea Hydro & Nuclear
Power Co. Ltd. (KHNP), conducted the CVAP for
the APR1400 RVI as a non-prototype category II
consisting of analysis, limited measurement, and full
inspection to independently verify the structural in-
tegrity of the RVI even if the APR1400 RVI were
licensed as a non-prototype category I consisting of
analysis and full inspection. The inspection and
measurement of the CVAP for the APR1400 RVI
was performed from January 2016 to December
2016 at Shin-kori (SKN) unit 4 NPP.

This paper describes the results of evaluation on
analysis, measurement, and inspection programs for
the APR1400 RVI. In analysis program, we pre-
dicted deterministic and random hydraulic loads as
the nature of the loads and two types of structural
responses caused by those hydraulic loads. The hy-
draulic loads in the internals and dynamic responses

230 | Trans. Korean Soc. Noise Vib. Eng., 30(3) : 229~238, 2020

were also measured and the measured data were
compared with predicted data to confirm the val-
idity of the analysis results. After the internals had
the
internals were inspected to detect evidence of ex-

experienced sufficient flow-induced vibration,
cessive motion.

2. Comprehensive Vibration Assessment
Program

2.1 Vibration and Stress Analysis Program

The vibration and stress analysis program con-
sists of hydraulic load analyses and structural re-
sponse analyses. The program was performed before
hot functional test of SKN unit 4 NPP and was per-
formed additionally to reflect the measurement re-
sults after the vibration and stress measurement.

The hydraulic loads include the deterministic hy-
draulic loads caused by the pump pulsation and the
random hydraulic loads induced by the turbulent
flow. The deterministic loads and the random loads
are assumed to be caused by independent sources.
Therefore, those hydraulic loads can be calculated
separately®®. Fig. 1 shows the method of hydraul-
ic and structural analysis®*™®,

The deterministic hydraulic load is due to the
pulsations caused by the reactor coolant pumps. The
pulsations propagate through the RVI as acoustic

‘ Hydraulic Analysis Method

I
‘ Deterministic Loads (Induced by Pump)‘ Random Loads (by Turbulent Flow)
T

‘ Generate 3D Domain ‘ Generate 3D Domaln (DES Model)

Input Flow rate and Pressure

Calculate Random Loads

|
|
I
‘ Input Pump Pulsation (psi/Hz) ‘ |
‘ (PSD spectrum)
I

Calculate Deterministic Loads
(Harmonic Load)
I

Generate 3D Structural Model with Hydrodynamic Effects
I

Calculate Modes and Natural Frequencies

| Spectrum Ana\ys\s for random

Input Harmonic Loads ‘ | Input PSD Spectrum Load

Calculate PSD Response (30)

Calculate Deterministic Response ‘ |
I

|
\
|
|
‘ Structural Response Method ‘
I
\ |
\ |
‘ Harmonic Ana\yswls for deterministic ‘ ‘
\ \
\ \
\ |

Sum of Responses

Fig.1 Summary of hydraulic and structural analysis
method
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waves, independent of fluid velocity. The pulsations
also occur at multiples of the rotor revolution fre-
quency (20 Hz) and the blade passing frequency
(120 Hz) of the reactor coolant pump. Therefore, the
deterministic hydraulic loads were predicted with
acoustic analysis for 6 frequencies (20 Hz, 40 Hz,
120 Hz, 240 Hz, 360 Hz and 480 Hz). The structural
response analysis to the deterministic hydraulic
loads was performed with the spectrum response
analysis for the 6 frequencies. The total determin-
istic response was combined by the square root of
the sum of squares (SRSS) method®*>*!D,

The random hydraulic loads are due to the turbu-
lent flow in the reactor vessel and were predicted
with computational fluid dynamics in our study.
Since random nature of the turbulence, a statistical
method was used to define both the magnitude and
frequency of the turbulence. Therefore, power spec-
tral density (PSD) was used for both the random
hydraulic load analysis and the structural response
analysis. The flow except for the nearly stagnant
flow in the upper guide structure (UGS) was se-
lected as a turbulence analysis scope in the reactor
vessel, because the bypass flow of the APR1400 re-
actor vessel is less than 3 % of total coolant flow
and the flow in the inner barrel assembly (IBA) is
too expensive to simulate. Natural frequencies and
mode shapes of the RVI were calculated with block
Lanczos method which is used a lot in commercial
structural analysis programs and the spectrum analysis
was used for the structural response analysis. The fre-
quency range of the analysis was up to 500 Hz and
the scale of the analysis results was 3-sigma. The
hydrodynamic mass was considered, since the RVI
are submerged by the coolant. Therefore, the added
mass for each internal was calculated according to
ASME B&PV Section III Appendix N@&6%-10:12)

The analysis and test conditions of SKN unit 4
RVI CVAP presented in prior Ko’s papers™'?,
which are composed of 18 conditions based on the
operation configurations of the pumps, operating

pressures and temperatures. The transient state in

the test conditions of the RVI CVAP corresponds to
the start and stop of the reactor coolant pump.
Since the hydraulic loads on the transient state do
not give substantial effect on the results of the
structural analysis in comparison with the loads on
the steady state, the greater hydraulic load of the

steady states before/after the transient was used®.

2.2 \Vibration and Stress Measurement
Program

The vibration measurement program includes a
data acquisition and reduction system as well as test
conditions, consistent with the SKN unit 4 general
guidelines for the vibration measurement program
delineated in the US NRC RG 1.20 for prototype
RVL

strumentation to define the hydraulic loads and the

This program incorporates appropriate in-

responses of the internals that have been modified
relative to the valid prototype, and demonstrates
that the test acceptance criteria have been satisfied.
In addition, the measurement program incorporates
sufficient and appropriate instrumentation to mon-
itor those RVI components that have not been
modified relative to the valid prototype'”.

The vibration measurement program for the
APR1400 RVI consists of twenty-three sensors
(twenty-three data channels) located on the UGS
assembly. In detail, two accelerometers (ACC.) and

four strain gages (SG) for the IBA top plate, eight

HITC Upper

Assembly CEDM

CEA Extension Closure Head Nozzle
Shaft

Reactor Vessel
Closure Head

2 Acc, 4 SG
8 SG

1PT
DVI Nozzle

Upper Guide
Structure
Assembly

Outlet Nozzle

Inlet Nozzle

2 Acc., 4 SG, 2 PT

Fig. 2 Locations where 23 instruments were installed
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strain gages and one pressure transducer (PT) for
the control element assembly (CEA) shroud assem-
bly, and two accelerometers, two pressure trans-
ducers, and four strain gages for the UGS were in-
stalled as shown in Fig. 2%:7717,

The installation locations of the sensors were se-
lected to provide, to the extent possible, data com-
parable to those from the measurement and in-
spection programs for Palo Verde 1 and OPR1000.
There were restrictions on the APR1400 measure-
ment program, however, which resulted from the
necessity to minimize the risk of damage to the in-
ternals during site installation of the sensors and
their leads, and hardware to protect them from
flow-induced vibrations during the pre-core hot
functional test (HFT)(8’13). Fig. 3 shows two strain
gages welded on a CEA guide tube and an accel-
erometer installed on the UGS support plate.

The measurement for the APR1400 RVI was per-
formed from April 13, 2016 through May 18, 2016.
Although fifteen hard-lines for strain gages were
unfortunately damaged and their data were not able
to be acquired, the measurement for one strain gage
(SG12), three pressure transducers, and four accel-
erometers for the APR1400 CVAP were carried out
as a measurement procedure and the useful data

were able to be acquired'?.

2.3 Vibration and Stress Inspection Program
The inspection program follows the related guide-
lines delineated in the US NRC RG 1.20 for a pro-

Fig.3 Strain gages and accelerometer installed on
CEA guide tube and UGS support plate

232 | Trans. Korean Soc. Noise Vib. Eng., 30(3) : 229~238, 2020

totype RVI. The NRC RG 1.20 requires that the
non-prototype RVI components be subjected to at
least 1.0E6 cycles of vibration before the final in-
spection of the RVI. The minimum time duration of
the hydraulic loads applied to the RVI was decided
by the first natural frequency of the CSB. Therefore,
the inspection program consists of a comparison of
data gathered during the baseline (pre-HFT) in-
spection and data gathered during the post-HFT in-
spection to determine conformance with the accept-
ance criteria. The inspection program was performed
for the high stressed areas of the RVI and interfaces
between internals. The RVI to be inspected were a
core support barrel, an in-core instrument support
structure, a lower support structure, a core shroud,
CEA guide tubes, a UGS barrel, a CEA shroud, an
IBA, a hold-down ring, a reactor vessel, and a re-
actor vessel closure head. The baseline inspection
for the APR1400 CVAP was conducted from
January 4, 2016 to January 16, 2016 and the
post-HFT inspection was conducted from December
9, 2016 to December 20, 2016""%.

2.4 Comparison of Predicted and Measured
Data

The comparisons of predictions and measured da-
ta were done for the IBA top plate, the CEA shroud
assembly, and the UGS. The test conditions selected
for evaluation were representative test cases, consist-
ing mostly of operating conditions which provided
the larger loading conditions for evaluation.

There are two hydraulic loads of interest: the
pump-induced pressure pulsations and the random
turbulence pressures. Table 1 and Table 2 presents
the comparisons between predicted and measured
pump-induced pressure pulsations at the pump forc-
ing frequencies and rotor revolution frequencies for
several test cases. As shown in Table 1, the meas-
ured pump-induced RMS (root mean square) pres-
sure pulsations are very small for the pump forcing
frequencies of 20 Hz, 40 Hz, 120 Hz, 360 Hz, and
480 Hz. The maximum RMS pressure pulsations



Kyu-Hyung Kim et al.; An Analysis on Comprehensive Vibration Assessment Program for APR1400 Reactor Vessel Internals

Table 1 Comparison of predicted and measured pump-induced pressure pulsations for PT1

RMS Isati i
Test Temp. No. Sourcc pressure pulsation [psi]
i [El ol g 20Hz | 40Hz | 120Hz | 240 Hz | 360 Hz | 480 Hz | Total Det. RMS

3 P 0215 | 0023 | 0.000 | 0006 | 0003 | 0.095

3 93.3 0.236
M 0003 | 0000 | 0.000 | 0014 | 0000 | 0000 | 0.014
3 P 0613 | 0062 | 0.001 | 0085 | 0000 | 0.049

6 126.7 0.624
M 0.000 | 0.000 | 0.000 | 0.010 | 0000 | 0.000 | 0.010
3 P 0.198 | 0052 | 0.084 | 0522 | 0084 | 0.439

10 262.8 0.722
M 0.000 | 0.000 | 0.000 | 0.004 | 0000 | 0000 | 0.004
3 P 0650 | 0008 | 0.001 | 0008 | 0030 | 0.007

14 2913 0.651
M 0.004 | 0000 | 0000 | 0077 | 0000 | 0003 | 0077
1 P 0754 | 0001 | 0.001 | 0002 | 0008 | 0.100

15 2913 0.761
M 0000 | 0000 | 0.000 | 0.006 | 0000 | 0002 | 0.006
3 P 0650 | 0008 | 0.001 | 0008 | 0030 | 0.007

16 2913 0.651
M 0002 | 0000 | 0.000 | 0.061 | 0000 | 0005 | 0.06
4 P 0369 | 0012 | 0.002 | 0002 | 0036 | 0.000

18 2913 0371
M 0000 | 0000 | 0.000 | 0052 | 0000 | 0001 | 0.052

Table 2 Comparison of predicted and measured pump-induced pressure pulsations for PT3

RMS pressure pulsation [psi]

Test Temp. No. Source*
diti C f
condition | [£] | of pump 20Hz | 40Hz | 120Hz | 240Hz | 360 Hz | 480 Hz | Total Det. RMS

3 P 0087 | 0032 | 0011 | 0131 | 0.043 | 0045

3 93.3 0.172
M 0024 | 0012 | 0002 | 0003 | 0000 | 0001 | 0.027
3 P 0228 | 0.091 | 0.140 | 0318 | 0.002 | 0.095

6 126.7 0436
M 0.003 | 0001 | 0001 | 0005 | 0.000 | 0000 | 0.006
3 P 0.021 | 0006 | 0009 | 0055 | 0.009 | 0.046

10 262.8 0.076
M 0002 | 0001 | 0000 | 0009 | 0.000 | 0002 | 0.010
3 P 0.166 | 1480 | 0.023 | 1480 | 0205 | 0.191

14 291.3 2.120
M 0012 | 0006 | 0009 | 0136 | 0000 | 0009 | 0.138
1 P 0285 | 0006 | 0013 | 0092 | 0.148 | 0807

15 291.3 0.873
M 0.000 | 0000 | 0.000 | 0003 | 0.000 | 0001 | 0.003
3 P 0.166 | 1480 | 0.023 | 1480 | 0205 | 0.191

16 291.3 2.120
M 0009 | 0008 | 0004 | 0142 | 0.000 | 0003 | 0.143
4 P 0.139 | 0052 | 0026 | 0011 | 0.103 | 0.188

18 291.3 0.263
M 0003 | 0001 | 0002 | 0070 | 0.000 | 0003 | 0.070
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measured at 0.077 psi at 240 Hz in the test con-
dition 14 as 0.077 psi. The maximum measured to-
tal deterministic load also shows 0.077 psi in the
test condition 14 too, and the maximum predicted
RMS pressure presents 0.761 psi in the test con-
dition 15. Although the measured data are higher
than the predicted values in some test conditions,
the total measured pump-induced RMS pressures
are higher than the predicted pressures. In general,
the total measured pump-induced RMS pressures
are smaller than predicted those by approximately
one order of magnitude or more for the locations
PT1 within the CEA shroud assembly. From Table
2, the pump-induced RMS pressure pulsations for
frequencies of 20 Hz, 40 Hz, 120 Hz, 360 Hz, and
480 Hz are very small. The highest measured RMS
pressure occurred at 240 Hz. The maximum RMS
pressure at 240 Hz in the test condition 16 was
0.143 psi. The maximum measured total determin-
istic load also shows 0.143 psi in the test condition
16 too, and the maximum predicted RMS pressure
presents 2.12 psi in the test condition 14 and 16. In
general, the measured values for pump-induced

pressure pulsations are substantially smaller than the
predicted values, especially at 240 and 480 Hz forc-
ing frequencies.

For random turbulence pressure in the UGS sup-
port plate region, Fig. 4 shows comparisons of pre-
dictions versus measurements on location PT3 for
the test condition 18"?. The figure indicates that
the predicted PSD trend matches or envelopes the
measured random turbulence pressure. Meanwhile,
we do not compare the measured values with the
predicted values for random hydraulic loads inside
the UGS in this paper, because the flow in the
CEA shroud assembly isn't the main flow of reactor
coolant and so the flow wasn’t predicted with CFD.
Also due to the reason, the conservative hydraulic
loads among the hydraulic loads predicted on the
UGS support plate were used for the structural
analysis of the CEA shroud assembly.

The total hydraulic loads predicted and measured
are shown in Table 3. Comparing Table 3 to Table 1
or Table2, the deterministic hydraulic loads are
generally smaller than the random hydraulic loads.
The hydraulic loads (PT1) in the CEA shroud as-

Table 3 Comparison of the predicted and measured total RMS hydraulic loads

Cc‘gﬁtif;t12345678910 2| 3] 14| 15| 16| 17| 18
pT1 | P | 044] 035] 037] 0.79] 0.71] 0.72] 0.92] 1.41] 1.04] 0.86| 1.26] 0.84 0.71] 0.95] 0.88] 0.95] 0.72] 0.71
() [ M | 0.80] 0.97] 0.95] 1.10] 0.43] 0.40] 036] 0.44] 0.40] 039] 0.84] 034| 0.41| 1.04| 036] 1.00] 0.43| 0.45
pT3 | P | 1.74] 1.89] 1.10| 1.45] 0.45| 1.45| 1.71| 1.39] 0.40| 1.25| 1.84| 1.21] 3.26| 3.26] 2.03| 3.26| 548| 0.83
(psi) | M | 0.73] 0.87] 121] 0.92] 0.38] 0.50] 033] 0,65 036] 048] 1.19] 0.51] 0.59] 1.26] 031] 1.22] 0.53] 0.59

Measurement Prediction

285 280 275 sbo 335 330 375 abo ad5 aso 275 sbo
Frequency (Hz)

35 30 75 100 135 130 175 200

Fig.4 Comparison of measured and predicted pressure
PSD distribution at PT3 in test condition 18
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Fig.5 Measured strain PSD distribution in narrow
band at SG12 in test condition 6
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sembly were measured to be considered even if the
in the CEA the

mainstream. The predicted values are generally larg-

flow shroud assembly isn't
er than the measured values. However, the random
hydraulic loads used for the structural response anal-
ysis of the CEA shroud assembly need to be applied
more conservatively for the test condition 1~ 4.
Table 4 show the natural frequencies of the CEA
shroud assembly predicted from the first to the fifth
mode. Fig. 5 shows measured strain PSD distribution
in narrow band of the SG12 in the test condition 6.
This plot shows peaks at approximately 29.5 Hz,
as com-pared to the predicted value of 30.8 Hz
(126.7°C, test condition 6). However, several peaks
are observed at frequencies different from the natural
frequencies in Fig. 5. Those frequencies are about
10.5Hz, 12.2Hz, 14.7Hz, 20 Hz, and 38.5 Hz. Similar
results were seen in other test conditions. strain PSD
distribution in narrow band at SG12 in test condition 6.
The frequency ranges for those peaks are 10.5 Hz
~ 11.5Hz, 12Hz ~ 13.5Hz, 14.5Hz ~ 17 Hz, 20 Hz

Table 4 Natural frequencies of CEA shroud assembly

~ 22 Hz, and 38.5 Hz ~ 39.5 Hz. The peaks of 20 Hz
~22Hz and 38.5 Hz~ 39.5 Hz are judged to be
from the deterministic hydraulic loads. For the other
peaks, it is estimated that the responses of the UGS
and the CSB have an effect on the CEA shroud as-
sembly, since the CEA shroud assembly is welded
to the UGS assembly and is fixed with the CSB as-
sembly by alignment keys, or those peaks can be
generated by rigid body motion induced by fluid
coupling between the UGS assembly and the CEA
shroud assembly.

The total RMS responses of the UGS assembly
in the SKN unit 4 RVI CVAP tests and the re-
sponses of the internals in the analysis are shown in
Table 5. The responses of the UGS assembly to the
deterministic and random hydraulic loads are the re-
sults of structural responses of entire UGS assembly
as well as of individual components such as the
UGS barrel, the UGS support plate, the IBA barrel,
the IBA top plate, the CEA guide tubes, the CEA
shroud tubes, and the CEA shroud webs. The struc-
tural responses of the UGS assembly were meas-
ured by the strain gages and the accelerometers.

Natural e (6 From Table5, it is clear that the measured re-
frequency sponses in the UGS assembly are generally lower
(Hz) 656 | 933 | 1267 | 1822 | 262.8 | 2913 . . .
than predicted values. The maximum strain was
1| 302 | 304 | 308 | 31.6 |32.526|33.257 . .
measured by the SGI12 in the test condition 11 at
2| 335 | 337 | 339 | 355 |35.58736.299 . . .
7.17 pe (micro-strain) RMS. This is smaller than the
Mode | 3 | 560 | 573 | 386 | 60.5 | 62684 | 63.526 maximum predicted value of 9.92 pe. The maximum
4 751 | 765 | 775 | 769 |79.389 | 79.986 measured displacement is 4.54 mils for the IBA top
51 885 | 899 | 990 | 99.0 |99.575 | 99.883 plate (A1) in the test condition 14. This is lower
Table 5 Comparison of the predicted and measured total RMS responses of UGS assembly
CVAPtest |y | 5l 3] a| 5| 6| 7] 8| o 10 1|12 13 14| 15| 16| 17] 18
condition
SGl2 | P | 346| 489 581 3.17| 262 3.17| 2.09| 723 | 524 | 821| 821| 543 | 5.11| 992| 695| 9.92| 641| 110
ue
@) T\ aer] a70| 4s9| s68| 204] 200] 197] 262| 487 549] 707 476| 2.52| 6.03| 3.04| 5.85| 268] 251
Al | P | 747| 144| 17.7] 247 | 220 247| 144 357 262| 202| 227| 22.7| 200 304 | 369| 304 | 295| 189
(mils) |\l 30| 236] 222] 218 113] 128| 087 150| 0.87| 100| 2.47| 1.02| 165| 454| 123] 415| 132] 1.68
Aq | P 193 244 1‘;‘7 8.55| 1.02| 8.55| 1.01| 9.72| 3.25| 15.6| 15.6| 152| 899 | 8.99| 0.72| 899 | 6.37| 5.59
(mils)
M| 140| 1.84| 2.92| 1.29| 0.57| 0.87| 047 0.96| 0.75| 1.39| 3.81| 1.51| 1.71| 3.60| 0.71| 428| 1.67| 1.98
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than the predicted value of 36.9 mils RMS in the
test condition 15. The maximum measured displace-
ment of the UGS support plate (A4) is 4.28 mils in
the test condition 16. This is smaller than the pre-
dicted value of 15.6 mils in the test conditions 10
and 11. This shows that the response analysis for
the UGS assembly was performed conservatively.
Unlike the measurement, the predicted displace-
ments of the Al are much larger than those of the
A4. This is due to very conservative hydraulic load
input method used for the structural response analy-
sis for the IBA top plate.

3. Discussion

The measured deterministic hydraulic loads were
significantly less than predicted deterministic loads
for the UGS and the CEA shroud assembly, and the
measured random hydraulic loads were mostly lower
than the predicted random loads. The measured natu-
ral frequencies agreed well with predicted natural fre-
quencies in all internals for the CVAP in this study.

The measured strains on the CEA shroud assem-
bly were mostly smaller than calculated those in the
structural analysis and much smaller than the ac-
ceptance criteria (165 ps®”). Meanwhile, the pre-
dicted displacement for the IBA top plate (Al)
were much higher the measured data.

This is due to the assumption that random hy-
draulic loads act only to bottom of the IBA top
plate conservatively in the structural response analy-
sis of the IBA top plate. The predicted displace-

ments for the IBA top plate and the UGS assembly
were higher the measured data respectively. After
comparing the analysis results with the measure-
ment results, we performed the random response
analyses additionally since it has been found that
the random hydraulic loads for some structures
have not been calculated conservatively compared
to the measured loads.

Table 6 shows the predicted maximum stress in-
tensity in the CVAP conditions for the APR1400
RVI and the allowable stress from ASME Boiler
and Pressure Vessel Code, Section III, Division 1 -

Appendices, @n,

Fig.1-9.2, design fatigue curve
Since the predicted hydraulic loads and structural
responses for the APR1400 RVI mostly shows con-
servative results and the maximum stresses of the
RVI are lower than the allowable stress, it means
that the

con-firmed for flow-induced vibration.

structural integrity of the RVI was
The inspection of the RVI was performed after
sufficient hydraulic vibration. After the completion
of pre-core HFT, the overall external views of the
RVI surfaces were throughout the metallic charcoal
color. Most of close views revealed that components
were more gold / bronze in colors and coated with
dusty powders of the charcoal color. It is judged
that the stainless steel would change color after be-
ing exposed to the high temperature associated with
HFT. There was also no loose part, debris or ex-
cessive motion of the RVI during the HFT!®,
Moreover, the inspection results showed no evi-
dence of damage to the instrumentation or support-

Table 6 Predicted maximum stress intensity in CVAP conditions for APR1400 RVI'”

Maximum stress condition Predicted stress Allowable
Component . . . .
Normal operation condition intensity (psi) stress (psi)
CSB 2 pumps, 260 ‘F 8577.3 13 600
4 pumps, 555 °F 2917.9
3 260 °F 5777.3
LSS P 13 600
4 pumps, 555 °F 1296.2
3 , 260 °F 7738.3
UGS DU, - 13 600
4 pumps, 555 °F 4590.9
4 , 555°F 12 308.7
IBA PUTRS, 220 13 600
4 pumps, 555 °F 12 308.7
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ing hardware installed for the RVI CVAP. Therefore,
it is confirmed that the results of visual inspection
are consistent with the results of the analysis and

measurement program.

4. Conclusions

We had completed the comprehensive vibration
assessment program for the APR1400 reactor vessel
internals with the analysis, inspection, and limited
measurement based on the U.S NRC regulatory
guide 1.20, Rev. 2. The measurement and inspection
program were performed during pre-core hot func-
tional test at Shin-kori unit 4 nuclear power plant.
The prediction, measurement and inspection results
were compared and evaluated. It is confirmed that
the analysis results were higher than measurement
results and the maximum stresses of the reactor
vessel internals for flow-induced vibration were
lower than the allowable stress. Moreover, there
was no evidence of damage of the internals in the
visual inspection. Therefore, we verified that the
APR1400 reactor vessel internals have structural in-
tegrity for flow-induced vibration and are accept-

able for long term operation.
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ABSTRACT

There has been an increase in the demand for a device that can be used for care or rehabilitation of

the elderly and disabled, owing to the increase in the number of elderly people and the interest with re-

gard to the quality of life of the disabled. We herein propose a lifting device for the elderly and dis-

abled, which performs functions, such as patient weight compensation function to reduce the physical bur-

den on the caregiver, as well as basic lifting and exercise functions. The trolley and rail are designed to

minimize the height of the device in consideration of its use in houses that have low ceilings. The de-

signed rail was demonstrated for safety via a static analysis on ANSYS workbench software. Experiments

were conducted to verify every purposed performance of the manufactured lifting device.
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Table 1 Roller specification

. Basic static| Safety
Component| Product | Bearings load coofficient

Guide No

Roller | UMC15-5-3 bearing ) )
carmier | 1Mr50-30 | 600227 | 5.6kN 3.36
Roller

Pulley | MBGASO-5 | 6001ZZ 5.1kN 1.86
Roller 1 |RORAS50-50 | 6002ZZ | 5.6 kN 4.08
Roller 2 | RORA20-30| 696ZZ - -
Rollers | TGRA30-30| 698ZZ - -

Table 2 Component specification
Safety
Component | Product Spec Value coefficient
Powerloc Maximum
Rope breaking | 16.4 kN 9.83
expert SP
strength

Tension | cppgop | Rated 50010 -

sensor capacity

Indicator BS-205 1 poud rate 9600 -

series

Table 3 Motor component specification

Component | Product Spec Value Load
Motor | MSMDO82|  Static | 4\ 11323 Nm
GIT torque
Speed SPIHO090S | Reduction 50-1 )
reducer 050K ratio ’
Servo MCDHT ) ) )
amplifier 3520
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Table4 Component specification

. Groove Groove .
Diameter radius () | depth (h) Pitch (p) Length
100 mm 4.3 mm 2.99 mm 9.3 mm 135 mm

Table 5 Results of parameter study on rail cross section

Variables (Unit) Model 1 Model 2 Model 3
A (m) 90 90 86
B (m) 10 15 15
C (m) 60 50 50
D (m) 30 30 25
“ fol\n’f;‘tiig‘fr?mm) 1.148 0.995 1.066
Volume (m®) | 10.80x107 | 12.60x10° | 10.74x107
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Fig. 8 Static analysis results of rail
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Fig. 18 Experiment for force control mode

| —

Fig. 19 Experiment for exercise mode
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Table 6 Parameter study for force control mode (unit: kgf)

Sdoun| 5 225 | 25 | 275 3
Eup
4 Unstable|Unstable | Unstable| Unstable | Unstable
4.5 - - Unstable| Stable | Stable
4.75 - - Unstable| Stable | Stable
5 - - Stable | Stable | Stable
Table 7 Parameters for force control mode
Parameter Meaning Value
Eup Minimum lifting force 5 kgf
Edown Minimum descending force 4.5 kgf
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Derivation of Vibration Test Profile for Equipment Mounted
in Tracked Vehicle
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ABSTRACT

For the equipment that is mounted in tracked vehicles, durability in various driving conditions is
essential. Therefore, before the vibration test, developers of such equipment are required to derive
test profiles with vibration levels similar to those observed in driving conditions; thereafter, vibration
tests are performed to verify the equipment’s durability. This study proposes a procedure to derive
the vibration test profile. First, accelerations are measured in twenty-four driving tests under different
driving conditions. The acceleration signals thus collected are used to obtain the acceleration spectral
density (ASD) data. Then, the ASD data is used to obtain the combined-ASD data for each velocity.

The combined-ASD data is used to derive test profile which is input for shakers in vibration tests.
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Table 1 Driving test conditions

Road type Velocity [km/h]
Pave 10/20/30/40/50/60
Repetition Measurement location

4 reps 2 points

Table 2 ASD transformation conditions

Span Frequency resolution
500 Hz 0.5 Hz
Time weighting Overlap
Hanning 66.67 %

Velocity [km/h]

Acceleration [g]
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Fig. 1 Velocity profile in 10 km/h
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Fig.2 Acceleration profile in 10 km/h
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ABSTRACT

The intensity in structures provides varied information on structural dynamics. Thus, we utilized

the intensity map to establish a novel approach to determine the active control source. We analyzed

the control performance of active control systems applied on plates using the feedforward and feed-

back methods in terms of the structural intensity. The feedforward controller is designed in the fre-

quency domain by minimizing the kinetic energy of the structure. The feedback control uses the di-

rect velocity feedback method. The control gain of the feedback system was determined and used to
obtain the best control performance, which is denoted by the total kinetic energy for the structure.

Then, the variations in the intensity map patterns with the control strategies were analyzed to eval-

uate the correlations between the intensity flow and control performance. These correlations were in-

vestigated for all possible locations of the control forces over the entire structure. Consequently, it

was confirmed that there is high correlation between the intensity flow and feedback control per-

formance, and relatively higher correlation with respect to the feedforward control performance.
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ABSTRACT

Noise, vibration, and harshness (NVH) simulators enable the subjective evaluation of vehicle in-
terior noise and improvement of the NVH performance. To achieve a powerful and sporty engine
sound, several original equipment manufacturers of automobile parts introduce the engine intake noise
into the wvehicle cabin through pipe systems that reinforce the low-frequency engine noise
components. The present study proposes an intake-noise module that simulates an intake-noise re-
inforcing system and can be integrated with the previously developed NVH simulator. The in-
take-noise simulation module is based on the intake noise source model, pipe system model, and
room impulse response model. The pipe system is modeled by the transfer-matrix method (TMM),
and the room impulse response is modeled using the image-source method. The intake noise source
is time variant because the noise source depends on the rotational speed of the engine and the
crankshaft angle. TMM is also time variant because the noise propagation characteristics in TMM
vary with the throttle valve angle. Intake noise source and TMM are designed in the frequency
domain. In two cases of intake-noise reinforcing system, the loudness and sharpness (which are
known to be correlated with a sporty engine noise) are calculated for the simulated data. The devel-
oped NVH simulator can assist the design of intake-noise reinforcing systems that reach the targeted
sound quality.
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ABSTRACT

Accelerometers have been used to measure engine vibrations. However, this is costly, and it is
difficult to set the measuring location. Therefore, a method using the knock sensor was studied. This
has advantages based on its economic feasibility, along with the level of convenience and speed.
However, the voltage output frequency range of the knock sensor is low, and it requires the use of
the analytic method with time domain. Moreover, the simulation-engine and shaker are used for the
test rather than for application to an actual vehicle. Additionally, most of the research methods were
used for measuring the vibrations based on the RPM change under the normal engine vibration con-
dition, and analyzing the input frequency order at the combustion chamber, which varies according to
the crank axis angle. Consequently, there is a lack of research focusing on abnormal vibrations in
the actual vehicle. Thus, this study aims to measure and analyze the abnormal vibrations due to de-
fective power balance per cylinder, which has the highest frequency of failure in the actual vehicle
engine, via the circuit designed with the knock sensor. Thus, an amplifier and filter circuit was de-
signed, which can extend the low voltage output frequency of the knock sensor, and has an adequate
filtering capacity. To create the defective power balance conditions, misfire circumstances were
formed by sequentially blocking the fuel supplied to each cylinder of the quadruple cylinder engine.
The vibration signals from the knock sensor passing through the designed circuit were measured us-
ing an oscilloscope. The values were saved and then subjected to fast Fourier transform, and the
power spectral density was obtained. Finally, the results were studied via comparative analysis using

normal vibration trends.
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Table 1 Test engine specifications

Engine type I-DOHC
Firing sequence 1-3-4-2
Compression ratio 11 :1
Bore(mm) 77
Stroke(mm) 85.44

Fig.5 Test vehicle was installed with the amplifier
& filter circuit
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ABSTRACT

In this study, a new method was proposed to set the area of a living room based on the vibration
behavior of the floor slab. The area of a living room studied in this study was named as the
“effective plate” which was referred to the plate theory. To investigate the influence of the effective
plate on floor impact noise, a modal test was conducted, and the floor impact noise was measured in
a mock-up structure with two different living room sizes with non-floating slabs. As a result, it was
found that the similar vibration responses and floor impact noises were obtained for the different living
room sizes. This was because although there was about 34 % difference in floor area of the two living
rooms, the effective plates of those cases were same as 40 m>. In the high frequency range with suffi-
cient mode density, similar vibration responses were obtained because the effective plates were similar
in size, resulting in similar floor impact noises. In contrast, however, for the frequency bands below
100 Hz with low mode density, significant differences in the vibration responses were observed due to
the shape of the plate and location of the load-bearing wall. Consequently, it was determined that the
living room shape and boundary condition, such as position of load-bearing wall, were the main influ-
encing factors for floor impact noise in the low frequency range, whereas the size of the plate was
the main influencing factor in the high frequency range. This means that it is necessary to consider
the frequency band in the design of a floating floor to effectively reduce the floor impact noise.
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Table 1 Test set-up of each living room
Thickness Type Floor Ceiling
2

150 mm 59 m o

84 m Non-floating Coffered

59 m? floor ceiling

210 mm T sam | 120 mm

Table 2 Experimental results of floor impact noise

Impact Flat information Single number quantity
Source | Type | Thickness | Lipmaaw Lia Fmax
59 55 60.1
1
Bang 84 >0 54 59.1
Machine
59 210 50 53.9
84 51 55.3
59 .
150 54 59.0
Impact 84 53 57.3
Ball 59 47 51.9
210
84 48 52.7
59 150 77 72.2
Tapping 84 71 65.2
Machine 59 65 60.1
210
84 65 582
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Table 3 Comparison of area defined as effective plate and

KS 2810

Definition as 59 Type 84 Type
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Proposed method 40.1 m? 41.4 m?

Table 4 Mode density of floor slab

Type / Thickness of slab Area Mode density
150 mm 5 0.0225

59 Type 40.1 m —
210 mm 0.0160
150 mm 5 0.0232

84 Type 414m P
210 mm 0.0166

Table5 Main parameter to reduce the floor impact noise
considering frequency range
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Impact source D)
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Conditioning Monitoring in Chain Sprocket Drive Unit System
Based on Artificial Neural Network
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ABSTRACT

A chain sprocket drive (CSD) system consists of parts such as chains, sprockets, gears, bearings,
and rotating shafts. The purpose of this study is to develop a health monitoring system that uses
deep learning artificial intelligence (AI) technology to diagnose defects in the CSD system in ad-
vance to prevent complete failures due to such defects. In this study, eight types of defects were ar-
bitrarily fabricated and combined to build a CSD system. Deep Al machine learning algorithms were
developed to classify and diagnose the eight types of defects. The eight types of defects were main-
ly limited to bearing parts, gear parts, and rotary shaft parts. Sprocket or chain defects were ex-
cluded from the eight types of defects. Finally, an Al machine was successfully developed and ap-
plied for diagnosing defects in the CSD system.
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Table 1 Defective parts of multiple fault in CSD system

No. Bearing Gear Rotor
1 - 3 teeth pitting -
2 - 0.5 tooth broken -
3 - - Eccentricity
A hole -
4 through outer race B Eccentricity
Foreign substance ..
5 between balls - Eccentricity
6 - 1 tooth broken | Eccentricity
A hole -
7 through outer race B Eccentricity
Foreign substance ..
8 between balls 1 tooth broken | Eccentricity
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Table 2 Accuracy of classification based on ANN

X-axis y-axis z-axis
Accuracy 99.30% 98.33% 98.39%
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Identification of Rumbling Noise in a Passenger Car
using Blocked Force Transfer Path Analysis
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ABSTRACT

Rumbling noise generated in a car interior is a phenomenon that occurs when vibration and noise
generated by the engine are transmitted to the vehicle interior. Resonance may occur in the main
parts of the transmission path during the transmission of the vibration and noise, causing the rum-
bling noise to increase. A transmission path analysis technique has been used to identify the trans-
mission path that causes the rumbling noise. This method measures the contact force of the mount
that connects the vehicle body and the engine, based on which it analyses the transmission path.
However, to measure the contact force, the engine must be separated from the vehicle body. To
compensate for this shortcoming, this study proposes a method called blocked force transfer path
analysis, which does not require the separation of the engine and vehicle body. The proposed meth-
od is applied to the identification of the transmission path responsible for the rumbling noise gen-
erated in a small passenger car.
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A Study on the Design Method Considering the Preference Characteristics
of the Residential Complex Fountain Directing Sound
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ABSTRACT

This study describes the efficient design of fountains using choreographed music and also the de-
sign of natural water sounds to identify the physical characteristics of the preferred sound source in
hydroponic spaces in residential complexes. According to the study results, REm, NbEm, sharpness,

StdDev, and G indices represent the choreographed music and sound of water generated by spraying

from the nozzle of the fountain. According to the type of fountain nozzle, type of floor on which
the water falls after being sprayed from the nozzle, and the method of creating hydroponic space,
such as water flow, the characteristics of the index for preferred sound source could be identified. In

addition to the lexical evaluation of sound sources for the sound of fountains and natural waters, it

was possible to classify the characteristics of the sound sources into eight lexica choreography senses
and nine lexica natural senses for natural water sounds. If additional sound sources are obtained in
an environment, where nozzle types of fountains can be diversified and combined in the future.
Subjective evaluations are verified through brainwave evaluation in a laboratory environment opti-
mized for brainwave testing and water sound production. It is expected that the design method of
optimized fractions for residential complexes will be presented and applied if additional sound sour-

ces are obtained in an environment for which nozzle types of fountains can be diversified and com-

bined in the future.
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Fig. 1 Images used in the test

Table 1 Sounds and images used in the test

Division Type
F1 Feather
Fountain F2 Hydra
sounds F3 Sharp
F4 Candle
W1 Falling water
Water W2 Falling water
sounds W3 Running water
W4 Running water

@ Fountain test site in Damyang

@ W1 Gangjin Moran Park Wall Mountain
W2 Wall Mountain in Hampyeong Natural Ecological Park
W3 Damyang Soswaewon Valley
W4 A brook in front of Gurye's Omi Village

Pl

F3 F4

W3 W4

Table 2 Semantic scale of test

Estimation 71 6l sl 4| 3| 2| 1 Estimation
vocabulary vocabulary
Comfortable 70 6| 5| 4| 3| 2| 1| Uncomfortable
Idyllic 7| 6| 5| 4] 3] 2| 1 Urban

Matching degree between scenary and sound

v 1] 2]3]4]5]6]7]8]9]w0
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Table 3 Characteristics of sound source

Division Lq | Lmn | Lue | StdDev | NbEm | EmT | REm | G | Sharpness aﬂgziyfrfcde
dB(A) | dB(A) | dB(A) (Nb/s) (%) (Hz) (acum) (au)
F1 39.3 36.2 443 1.0 8 10 0.67 2,014.0 1.82 5.87
F2 39.1 35.8 43.1 1.0 6 10 0.50 1,736.9 1.65 5.9
F3 38.0 345 44.7 1.4 26 7 3.17 1,253.5 1.57 5.42
F4 40.0 36.3 44.5 1.6 61 9 5.58 1,094.1 1.45 6.62
B Wi 42.9 42.1 44.0 0.3 0 0 0.00 2,358.6 2.38 9.26
w2 434 42.6 44.1 0.2 0 0 0.00 1,986.3 2.19 10.05
W3 39.5 37.7 422 0.7 0 0 0.00 1,649.6 1.91 6.26
w4 41.8 40.3 44.2 0.4 0 0 0.00 1,230.8 1.69 7.61
F1 44.2 40.9 49.0 1.0 6 10 0.50 2,410.5 1.82 9.41
F2 43.9 40.5 47.1 1.1 0 0 0.00 1,996.8 1.65 9.62
F3 42.8 39.4 49.9 1.5 41 10 3.58 1,600.6 1.56 8.78
F4 44.8 41.1 49.3 1.6 59 9 5.42 1,189.0 1.42 10.68
S W1 47.8 47.0 48.8 0.3 0 0 0.00 2,620.3 2.38 14.96
w2 483 47.7 49.0 0.2 0 0 0.00 2,168.6 2.19 16.28
W3 44.4 425 46.9 0.7 0 0 0.00 1,570.0 1.93 10.25
w4 46.7 45.4 48.1 0.4 0 0 0.00 1,450.1 1.72 12.53
Fl1 49.2 46.6 54.1 1.0 6 10 0.50 2,596.6 1.8 14.87
F2 49.0 45.6 53.2 1.0 6 10 0.50 2,100.9 1.63 15.27
F3 47.9 443 54.6 1.5 28 7 3.33 1,725.2 1.55 13.95
F4 49.8 46.1 54.3 1.6 66 0 6.00 1,255.0 1.42 16.88
a8 W1 52.9 52.1 54.0 0.3 0 0 0.00 2,750.9 2.37 23.85
w2 53.3 52.6 54.0 0.2 0 0 0.00 2,241.7 2.18 25.95
W3 49.4 47.7 51.8 0.7 0 0 0.00 1,974.1 1.95 16.48
w4 51.7 50.3 53.2 0.4 0 0 0.00 1,494.7 1.73 20.07
NbEm :_number of emerging peaks 4
EE:}FI grlsllgrgr?r:g peaks compare to its time rate EnT= ];[357 ,  REm = TEn G=M
REm : relative emerging peaks o]

G : spectrum gr:

avity center]

(Hz]

@]

A i

m d
LA Al ALY A &

Wi

w2

W3

w4
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A A, el Lnule ASHE 881K Table 1).
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47 & 4

2 Jto] 7hsd ST A, =4
47N & 4dA) 871E HE AdAste] VEeoR Al
AletaL of7]el +5 dBE WIHAIA 247 S9S AA
SPoith A S99 AES 8 A 54
< 333l ool Edit Pro Software®] Graphic Equalizer
30Bands(1/3octave)g &-&sto] Fak HAZY 718
T AFla 71ESY AT S4EE A Ay
Aol A S8 AE7t 790 A Qd E AYE AAEE
A A dEs aqtets HjA e HAAE A9
gk 5ol HaAE ALsith

=7 A AN FFemE A i) 74
e w3 & Aol olged &9 55E B4
AZF FIHb), HIEHEFTE AEHE FH0), HNE
7 Ee ‘ 3

22 Ay gl EAM b

T FFFAA 24 e S A
TANA A HET} AlES 71 20 ~ 400 227
Ao 2 2019 59 9YU ~ 1599 AAEFH o A
g 2 A UhHe g} 72

A SEAE s A es Jgegih S HA
e @l e A=, 2471 Lo A A,
A
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48 93l 01 dBiike] dBFAS} dBTrait(Ver. 5.4),
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k-

T =EoA 2AE = o

12 Sol A Ay
LT 29 7R =4
= “G’, ‘sharpness’7} Leg2t
wAE PRl h5d SRS 4 &
A adA, 24 4 S 49A) s HFT 1A

Table4 Analysis of the factors of the physical index by

spatial type
Division Component
Physwal Cor_nmun Sound of Loudness | EmT
index alities water
REm 0.895 0.928 0.009 0.187
NbEm 0.883 0.921 0.016 0.186
Sharpness 0.801 -0.838 0.190 -0.250
StdDev 0.941 0.811 -0.153 0.510
G 0.906 -0.803 0.383 0.339
Leg 0.990 -0.140 0.975 -0.141
Linax 0.963 0.140 0.956 0.173
Unbiased 0.965 -0.180 0.946 | -0.193
Annoyance
Limin 0.991 -0.287 0.916 -0.264
EmT 0.932 0.304 -0.208 0.893
Eigen values 5.352 2.895 1.021
Contribution 53.524 28.945 10.212
Table 5 KMO and Bartlett's test
Kaiser-Meyer-Olkin measure
. 0.648
of sampling adequacy.
Approx. chi-square 462.109
Bartlett's test
. df 45
of sphericity
Sig. 0.000
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Table 6 KMO and Bartlett's Test

Kaiser-Meyer-Olkin measure of F w
sampling adequacy 0952 0955
Approx. chi-square 13129.7 | 13363.4
Bartlett s test dar 276 253
of sphericity
Sig. 0.000 0.000
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Table7 Analysis of adjective factors for fractional

sound sources

Table8 Analysis of adjective factors for a natural
sound source of water

.. Component L. Component
Division T Division
Ease | Directing | Pleasantness | Deepness Ease | Natural | Pleasantness | Deepness
Calm 0.818 0.129 0.071 -0.133 Calm 0.844 0.147 0.083 -0.037
Soft 0.777 | 0.275 0.18 -0.055 Moving 0.772 | 0.201 0.257 0.029
Moving | 0.748 | 0.157 0.243 0.172 Meaningful | 0.754 | 0.268 0.347 -0.009
Meaningful | 0.714 0.225 0.333 0.015 Sonorous 0719 028 0336 0.126
Sonorous 0.676 0.285 0.304 0.198 Soft 0.656 0.194 0.079 0.052
Fitting 0.551 0.197 0.398 0.221 .
Fitting 0.514 0.25 0.439 0.159
Regular 0.33 0.704 0.085 -0.048
Colorful 0.172 0.694 0.256 0.096
Colorful 0.056 0.655 0.329 0.067
Clear 0.164 0.687 0.193 0.196
Clear | 0.129 | 0.65 0.242 0.13 —
Distinctive | 0.042 | 0.631 0.288 0.165 Distinctive | 0.043 | 0.68 0.181 0.19
Warm 0301 0602 0.007 0212 Familiar 0.263 0.669 0.23 -0.033
Familiar | 0336 | 0.596 0312 -0.049 Full 0.178 [USel 0383 0.168
Full 0.138 | 0.545 0323 0.146 Rregular 025 | 0.658 0215 -0.089
Refined 0.367 0.444 0.38 0.09 Mysterious 0.366 0.536 0.206 0.004
Pleasant | 0.236 | 0.249 0.784 0.036 Delicate 0.371 | 0519 0.374 -0.114
Lively 0.241 0.247 0.765 0.137 Warm 0.383 0.485 -0.107 0.305
Pleasant 0.181 0.271 0.742 0.142 Lively 0.228 0.262 0.799 0.125
Fresh 0.368 0.22 0.707 -0.146 Pleasant 0.25 0.338 0.756 0.055
Delicate 0.306 0.42 0.522 -0.004 Pleasant 0.206 0.295 0.755 0.159
Mysterious | 0.274 0.434 0.478 0.059 Fresh 0.393 0.398 0.532 -0.2
Strong -0.145 0.219 0.245 0.736 Strong -0.078 0.297 0.266 0.72
Deep 0.261 | 0.165 -0.006 0.642 Deep 0495 | 0211 0.218 0.514
Light 0.247 0.443 0.359 -0.444 Light 0.191 0.444 0.324 20484
Eigen values| 9.856 2.069 1.345 1.165 Eigen values 9.86 2071 1234 1119
Contribution | 41.10% 8.60% 5.60% 4.90% Contribution | 42.90% 9.00% 5.40% 4.90%
S 00515 2 Lekkonz 96 £49] o 43 =

Tt 7Fs e
£98 ALAe 0.213, A B4 L

AoR FHATKTable 6). AN B

29 AP

0.370, “AlEE 03612 LER} Agslx] rouz 9]
T QRS At

FHE7E SO B Y o3t 8RR 4
¥} Hergh A&7, FAlE, Dot soR YEhen,
A B2 29 o3Hte] QWA A Hekg,
AAzy, fFAg ol s o= UERTH Table 7)

B3 599 A9 ddEgtel gigk 013, 2 B4
9] Ag- Azl ea4vF EEHATE o= %
FARA ] =Qs= B 2 A B4 3o ol
gk Frlol3] = g8 7hse Ao® FE T Table 8)

o] AN %
sto] FATEA F4E
spotsal 4 @ﬁl%‘ﬁ% Aovstaal stgon o
ATE ool A T8 AR

(1) AIAE 87 SLET =2
M Lo WS 10 dBE5 dB)] H WellA
7V} G[Hz]&= Level 1(1100~ 1500 Hz), Level
2(1500 ~ 1900 Hz), Level 3(1900 ~ 2300 Hz), Level
4(2300~2700 Hz) 59 77+8 dAets 548 B
9o Level 1, 20|AE 2% Zoa] BAlsH= &
2], Level 2, 3914 H|AE 7} 8 Bro| A whas}
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Q) TADA W AT E4E AT 599 A
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g B 358 FA A& Aol E54] vk
7} A BAEE feather 29k A A S
& Azse AoE Yesth vt dEEs
o) A= feather, hydra 5 =& EH-EoM &
Al HAREZE A dAEtEA Hadd siedd
NbEm#} Ao gt 4] Al H]& REm
o] B 9o MuH= A oR vehgTh HA =T}
=L o] HAAH FIME G[HzZ|9F HIAET}
=2 featherd} T2+ E4F SUoIATE G[Hz],
StdDev7} 52 & 18 A MoHe= 2o o
Elstth Bo] 22& F7AM e A9 ASAY &
25 B4f #3888 AEsle Zez Yt

(3) =7 =¥ ol3Hrte 0w Ay s
A&7, FAE, dolft To= YEigon, A &
28 549 o3Hrte a0wA Ad Hekd AAq
sk, Zolzt o ueuth g e A5
A7l gt o3, A B4 299 A A
ol 847 EEES IRIE sl ol
FAGA o s E 25 9 AA B4 59 o
o AFA B3R &8 e Aow A

T B = E F88 st 2 2F{E F e
AN F9E F7F greta Hadd 9 B4
Az HAsty AEH FHAAN HHGHE 3
TG 7tet BE|A ek A E FUHE HAEEe
24 A FARA ] E A S AAlsaL
HEE s Ao dgHn

AR5 AN T
AAe] AR ol +qH )2 TAAINo.
NRF-2017R1D1A1B03033302).
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(their) complete affiliation(s) (3) Key words (4) Abstract (5) Nomenclature (6) Introduction (7) Main body (8)
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=] AAE ted BES 9FoF gl (D AE (2) AAE () F871E R0 (key word) (4) 5 (5)
71349 (6) 2 () B2 822 9)FLEH (1) 5= 5
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(5) The abstract should be written in Korean and English not exceeding 600 characters or 250 words.
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(6) The number should be written in Arabic numeral and the SI unit system should be used.
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(7) Tables and figures of the paper should be arranged in order and inserted into the main body. The title and
content of table and figure should be written in English.
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author including address, phone number, fax number and email address.
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(11) The final manuscript accepted for publication should be submitted to the editor office through the society web
site.
AL 5 HE AYE =Edas o3 FlolAEE A 2 S Fall 83 ARl AlEgith

312 | Trans. Korean Soc. Noise Vib. Eng., 30(3), 2020



Title of the manuscript | =2 A S .

—

o o o

O

O

O Ooogoe

oOooe

Transactions of the Korean Society for Noise and Vibration Engineering

Checklist for Original Article | MXIHAE

Please check below items as  mark before submission of the manuscript. | 2} 52 3}0)5}11 /FAIE 1442

General guidelines | &1 gltlt

Manuscript contained (D one original manuscript, @ statement of copyright transfer, (3 Checklist for Original Article and was
attached. | 41 @ A& 17, @ A d= 594, @ ARHARE AT E=7W

Manuscript should follow the format (can be downloaded from the web site). The paper can be typed with HWP or MS-Word.
| =& el 14 Afo]=z 98] 313 =EUa FA(FHolANA thez )l o3 hwp B MS-wordZ A S =71
The manuscript should be organized in the following order: (1) Title (2) Name(s) of author(s) and his/her (their) complete af-
filiation(s) (3) Key words (4) Abstract (5) Nomenclature (6) Introduction (7) Main body (8) Conclusion (9) References (10)
Appendices. | =52 AAE (DASE, QAAE, 3)FL7EL (key word), DZFE, G)712AY, OGN, (DEE, )2
E, OFLEY, (10) 5 55 userh

Main text consisted of introduction, subjects and methods, and results and discussion in separate pages. | B¥-& A2, At
S, A, aEs SHE AR

The paper should be written in Korean. However, the original terminology can be typed side by side with parathesis to avoid
confusion. The loanword orthography follows the government guideline. | g<r-8-0]= o2 ZAsE RS Yo7 &l
o] Egol S& A ()9l Aoz WrIEglen, Qo] ®7]= ARt wske=rle

. Cover page | EA|

el

Title, name of authors, affiliation was described both in English and in Korean. | Aoz =%9] A5y} ZE A=Y
2k EY QEow J1=aRP

In lower area of cover page, the name, address, email, telephone, fax of the corresponding author were described. | T4 &}k
of BAARe] A, A, Fh L ARAGAS, B, EmailtaE B2 7 ARG

. Abstract | =2

The abstract should be written in Korean and English not exceeding 600 characters or 250 words. | =52 =roj9} Joj= 7+
7} 6004} = 250%H0] ) el A ZAEAETR

. Main text | 22

Main text was written in order of introduction, main body(include Figure, Table), conclusion. | #&-2] A= A&, EE2(%
I9), AES sk
References should be cited as follows. | #5-o]] 0183t FuF3S =FAx JIAeyo WS #4397

References | At123

Every articles in references were cited in the main text. | ¥-3-ol] ¢1-&% o] Q&7

References were numbered according to numeric order. | &3-S Q1E&H AR (1), 2), B2 AR =71

All references were written in English. | F I3 25 JEOZ F7|eF =7

The paper from “Transactions of the Korean Society for Noise and Vibration Engineering” was cited if the content is relevant.
| “Sa AN eI =G F5E £3S 183 Zo] =k
Az, Arhd, AE, AW, -39 3, HolxHEe] &/ dayE - Ax
A, 4, AolAMET) S FFEAETR

Tables and figures | 2} O&

Titles and legends of tables and figures were written in English. | 2& 39} T3] Al&53 A JE oz 2AHAE7R
Figures were in required format. | AP A3 qFZol] 2HA A== A&7

Tables and figures of the paper should be arranged in order and inserted into the main body. | & %@ 28L& sfgw A
e st el i ATt

Trans. Korean Soc. Noise Vib. Eng., 30(3), 2020 | 313



Korean Society for Noise and Vibration Engineering
Research Ethics and Ethics Committee Regulations

HFASTIET
einesl U 2eNE 29 TN

M

@

©)

Q)

314

(Purpose) This provision is subject to the code of ethics of the Korean Society for Noise and Vibration
Engineering(KSNVE), which publishes and presents academic activities such as research ethics and the establish-
ment of relationships in KSNVE. The purpose of this document is to set forth the terms of the research ethics
committee for operational sanctions.

FA) B a2 FmaedEEsts)(olst «atavet dthe] &efddel wet shajeA o] 3
Stedsd WAEE Ay g, A A A AS, AdE g AT
(et “91dspet g AT Gl B AALS TS HA o vl

(Configuration and Functions) (D The committee shall be composed of one chairman, one secretary, and five
committee members. (2) Chairman and members shall be elected by the board of directors and appointed by the
KSNVE president. (3 The terms of the chairman and members are two years, and both can be reappointed. @
The chairman shall represent the committee and oversees the work of the ethics of the KSNVE.

(Ad3le] 74 2 A O Adsl= AL 189 A 19, A sHes 7% @ A9E B 9
& olAlelA AEahe Bge] Atk @ 9199 2 f19e] Yol 29w Fn AW 5 Uk @
AL Hd3E thastar stgle] &ejol w9k gF-E S

(Function) The committee shall work with the following contents: (1) Research and prosecute established ethics,
(2) Prevent and contain research misconduct, (3) Research misconduct deliberation and voting, (4) Report results
to the board of directors for decisions and sanctions more on cheaters, (5) Provide more details on the im-
provement and promotion of research ethics.

(1939 71%5) Ad3le b2 Wger dedtth 1) Ao o 3 F2) A7 FAYS ] o
I A 3) AT FAYL] Ao B oA 4) A o ARG 2 B oJALS|e] AR L 5)
71eF A+ &ee) A R Sl ad AR

(Convening and Voting) (D The committee shall be convened as necessary by the chairman. The vote in favor
of 2/3 of registered members. (2) The details that have passed the vote shall be notified to the suspect of mis-
conduct (defendant) and the defendant's opinion must be received as a written plea within 10 days. & The
committee shall review the explanatory materials received from the person suspected of misconduct. The ever
need to listen to your thoughts when the final vote. @ The details that have passed the vote shall be reported
to the board of directors to reach a final decision. (5 When judged necessary, the chairman may listen to com-
ments from outsiders or non-members. ® The presented details of attendees or the details of meeting from the

committee shall be kept confidential as a general rule.
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(Scope of Research Publication Misconduct) D "Plagiarism" refers to the act of theft without quoting such in-
formation or the results of the research of others without revealing the source. @ "Falsification" or "alteration"
is the use of another person's or one's own research results of operations or strain, says the act of distortion.
® "Duplicate publication" stands for the act of publishing the same details in two or more journals. @
"Wrongful inscription of author" stands for the action of putting on someone who has not contributed to the re-
search as an author. (3 Others say the unacceptable range.
(APRE BAA9Ie] W) D EA ol FAF WA e A el Aol A% B A%
A 2w Sgeks WA BT @ <92 D WD @ Elolt A7) AN ATAE Ave] 2o
et 9IS WITh Q@ «o|TAAP & 27 o] Fe] ShEAld FUZ &S AAse FHE
Pt @ “F-FIE AR & Al TofebA] g2 e AR Sule g9E wIth © 7)E 82l
ok R WelE wEh

(Informing and Notifying Research Misconduct) (D The contents of research misconduct are limited to the pub-

=

lications "Journal of KSNVE" and "Trans. Korean Soc. Noise Vib. Eng." @) The report of research misconduct
must be submitted in writing accompanied by the relevant data in accordance with the five W's and one H. 3
The committee then received a report that information within three months of deliberations to finalize the report
to the board of directors. @ The final content as determined by the board of directors shall notify the in-
formant and the malfeasant within 10 days and posted on the KSNVE homepage. (5 The end result regarding
the misconduct should not be released to the public before finalized.

(A7 FAR9e) AR 2 FR) O A7 FAEB WE2 duasdEesedd)=gy) A (es -
)l e e gttt @ AT FAYY] ARE SetdFHe] wet % AuE et AW
o AlEsteol gty @ 3= AR HaE 5 3HE el Aol 8-S gAste] o]alslel] ®alst
ofof k. @ oAbElellA HF AAE W82 109Well AEAet FAYAA A TRkl 3] F|o]
AE Fl eAFT © A FAYL R HEAITE FET] Aol 2ol EviE o= ke

(Sanctions for Research Misconduct) (D For authors whose research misconduct has been confirmed, punishment
may be selected to be imposed on each case after being reviewed by the committee and considering the se-
verity of misconduct determined by the committee: 1) Cancellation of publications published by the KSNVE for
the announcement study, 2) Prohibition for five years from contributing "Journal of KSNVE" and "Trans.
Korean Soc. Noise Vib. Eng.", 3) Prohibition for five years from attending the KSNVE Conference, 4)
Notification of the details of misconduct to the institution, 5) Disqualification of society members. @ If a caller
has intentionally and falsely reported a violation, according to the decision of the committee, the committee
may impose the same sanctions and level as described in "Sanctions for Research Misconduct."

(@ AR U AA) O AT PRl AU AxAL A48 ARl Wl TR BFL
meistel theel AME Aeste] 4 & qlrh 1) A BEATE B S48 AR AAHL 2)
Sk stele] wE A shalHe] FaEA. 3) suzk k8l SHadlE WEFA. 4) FAAVNR 257100
$A4Y9) g B 5) 33 39AA e @ ARAL nolZ HAARE UL AT 939 24
of met AT FABNA £EH FAE AANE A 5 9

This regulation shall enter into force on October 24, 2008 (enactment)
P 20089 109 24U HE] A ITHAI)
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The Charter of Ethics for the KSNVE

sEAstESeE 2alEE

All members of “The Korean Society for Noise and Vibration Engineering” should perceive that our researches
improve the quality of life of human and have a great influence on community. Also we should cherish harmonious
and tranquil life, living together with neighbors and nature. Therefore, all members of KSNVE should have higher
moral sense and behave honestly and fairly to maintain authority, honor and dignity.
FF2NFTAN RE fPe o) A PPN BFRY 2 G FE AL sk, S
o] B AAI} HEo] Al 23HEAL LT A4S 4TS o1tk ol BE 3 ARTFEAY] Fe
oA 7L A9, e, A9S A 5 d=E AAsta s Fseith

H

1. Authors should use their own knowledge and technology to improve the quality of life of human.
S Qlfel ahel A AL Slte] Aale] A4 712 AHgeka F)eselob Fk,

2. Through the activities of KSNVE, authors should contribute to the development of Noise and Vibration
Engineering and industry and make efforts to promote the public interest for tranquil life. In addition, they
should devote themselves to their field and strive to boost competitiveness and the authority as experts on Noise

and Vibration Engineering.

YL FFBEL Bolo] A2 A4S U9 2LANFFAT e We] Flelskn T FRlel weste]
oF @t EW ASWEFY ARIEA Aokl HU3 BAm AL ANE Fol7] af w2l
ofo} gk,

3. Authors should behave honestly and fairly for education, research and real participation according to their scholas-
tic conscience and ethic.
e g, A7 S F A3 2F a2ja dA Fojodl o] AAstar gAsHA A4l sk, aeld
2} oFAlo|| ZAlslo]of shr),

4. Authors should not behave against the purpose of the foundation of the society.
92 o8] AYmAo] whska sldshs AMRES shefr of .

5. Authors must not have presented portions of another’s work or data as their own under any circumstances.
S EQle] AT} T AR Ao AT Tl AN =Foluh A% AN <k wH,
Bole] AT 8 AEAHE EFfelok Fhul,

6. Manuscripts submitted for consideration for publication in KSNVE are not to be used as a platform for commer-

2

cialism or unjust means.
e AR BAse] ASH PNE o alo] FFAAY PAHG o]5S FT slelM ohHrh
7. Every manuscript received is to be reviewed fairly by reviewer’s conscience as a scholar. And Ethics Committee

deliberate and decide on all matters related to research misconduct.
R QT A RS s B9 02 SEA Glel ke FHSA FAkslelol de.

(A7 : 2007. 09. 14, A3 : 2007.11.15)
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Research and Publication Ethics | ISR 2|

All members of “The Korean Society for Noise and Vibration
Engineering” should perceive that our researches improve the
quality of life of human and have a great influence on
community. Also we should cherish harmonious and tranquil
life, living together with neighbors and nature. Therefore, all
members of KSNVE should have higher moral sense and be-
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2) Through the activities of KSNVE, authors should contribute
to the development of Noise and Vibration Engineering and in-
dustry and make efforts to promote the public interest for tran-
quil life. In addition, they should devote themselves to their
field and strive to boost competitiveness and the authority as
experts on Noise and Vibration Engineering. | $-2]+= 31385
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3) Authors should behave honestly and fairly for education, re-
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science and ethic. | $-2]= &, o+ g5 9 Ay @¢x oglu
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Alell SAstofof gt

4) Authors should not behave against the purpose of the foun-
dation of the society. | %2l 8] HAgE o] wala F&Esh=
AHEHE-S stefAE ofd Hrk

Duplicate Publication of Data | =2 0|F A&}

Papers should contain new results of original research and aca-
demic contribution to noise and vibration engineering, which
hasn't been submitted or published in any other journals. Also
the published paper to this journal should not be submitted or
published in any other journals. | =%5< W82 €} FXol] FiL
e IR o2 Jlom 293
B4 7M7) & Aom gk g
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