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요  약

영상 진동 측정에 사용되는 위상기반 확대는 시간영역(또는 주파수영역)에서 특정 주파수 대

역을 필터링하여 물체의 진동 주파수 위상을 확대하여 영상으로 나타내는 방법이다. 그러나 물

체의 진동 특성이 미리 지정되지 않은 경우에는 필터 주파수 대역을 전체 주파수로 설정해야 하

는데, 이 경우 노이즈와 불필요한 주파수 성분의 위상까지도 확대되어 피사체 가장자리 엣지에 

추가적인 파형 왜곡이 발생하여 정확한 측정을 방해하게 된다. 본 연구에서는 대역 통과 필터의 

주파수 대역을 설정할 필요없이 단일 프레임 영상 데이터로 사전 학습된 오토인코더 모델을 사

용하여 엣지 왜곡을 저감하는 방법을 제안한다. 따라서 제안하는 방법은 최적 대역 통과 주파수

의 설정과 같은 추가적인 파라미터 조절이 필요하지 않으며, 각 프레임 단위 영상스트리밍에도 

적용할 수 있다. 또한, 영상 진동 측정을 위한 위상기반 확대에서 기존 대역 통과 필터와 동등한 

수준으로 노이즈를 억제하고 엣지 왜곡을 저감하는 효과를 보였다.1)
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ABSTRACT
The phase-based motion magnification, employed in video vibrometry, entails filtering a specific 

frequency band in the time domain to magnify the small motion of an object (or frequency domain). 
However, if the object’s dynamic characteristics are unspecified, the frequency band should be set to 
the whole band. In this case, the noise and unwanted frequency components are magnified, resulting 
in additional wave pattern artifacts around the object’s edge. This study proposes a method utilizing 
a trained autoencoder model in every single frame image without setting a specific band-pass filter 
frequency to reduce the edge artifacts due to the undetermined frequency of band-pass filtering. 
Consequently, the proposed method does not require additional parameter adjustment, such as optimal 
band-pass frequency setting. Moreover, it can be applied to each frame image, enabling it to be 
adopted for the magnification of online streaming video. In addition, it demonstrated an equivalent 
performance in noise removal and edge artifact suppression to the conventional band-pass filtering 
approach in phase-based magnification for video vibrometry.
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1. Introduction

Conventionally, piezoelectric accelerometers or laser 
Doppler vibrometers are utilized to monitor the 
vibration of mechanical structures. However, recent 
research has focused on applying image processing 
techniques to vibration monitoring. Image processing 
includes techniques for point tracking and digital 
image correlation.

Small vibrations that cannot be observed with the 
naked eye can overcome the limitation of small 
displacement through the image-magnification technique. 
In particular, phase-based video magnification 
(PBM)(1) is used in various image-based vibration 
measurement research(2~5) since it linearly magnifies 
the dynamic behavior. On the other hand, temporal 
band-pass filtering is employed to reduce image 
artifacts caused by the magnification. However, it is 
difficult to set the band-pass filter’s frequency in a 
real-world measuring situation because the magnifi-
cation technique is performed without knowing the 
object’s dynamic frequency range. When the entire 
frequency band is magnified, unnecessary motion is 
also magnified, resulting in image artifacts. Therefore, 
it is difficult to obtain exact vibration data, as it is 
challenging to measure accurate data on structural 
vibration.

Assume that the image artifacts induced by the 
magnification technique are considered to be image 
noise. In this instance, noise removal can be 
addressed for a single-frame image independently, 
regardless of other image frames in the time domain. 
Filters(6,7) and orthogonal transformation(8,9) are 
fundamental noise removal techniques in image frames. 
Due to the inconsistent noise, parameter optimization 
is essential to use the aforementioned rule-based 
approaches, such as filters or orthogonal transforms. 
Autoencoder neural networks for image noise 
removal were recently introduced to address these 
optimization issues.

As a result, in this study, we proposed a method 

to use an autoencoder instead of a predetermined 
temporal band-pass filter to eliminate artifacts caused 
by the full-frequency band phase-based magnification. 
The autoencoder model was trained to receive an 
image frame without band-pass filtering as input 
and return an image frame with appropriate band- 
pass filtering. Then, a dataset was generated using 
online phase-based magnification(10), and the model 
was trained. The verification confirmed the artifact 
reduction of the results of applying the autoencoder 
model based on the accuracy of the extracted 
displacement.

2. Phase-based Magnification

Phase-based magnification employs a complex 
steerable pyramid(11) to extract motion components. 
The magnification image frames are generated by 
merging each level of magnified images. The com-
plex steerable filter, which is a partial component 
of complex steerable pyramid at specific spatial fre-
quency, is a spatial sinusoid applied windowing, 
therefore can be noted as  . where   and  
respectively represent a positional coordinate and a 
specific frequency in the spatial domain. A spatially 
decomposed image   can be described as fol-
lows as Eq. (1):

 ⊗    (1)  

where the ⊗ represents convolution on spatial 
domain. As the purpose of reconstructing an image 
is to collect all frequency image components,  , the image notation can be represented as an 
infinite series as Eq. (2)

 ∞∞     (2)

where    represents the sparse motion. The phase 
difference between the first and current image 
frames is equivalent to the sparse motion at specific 
spatial frequency, denoted as   . This shows 
the difference in the complex phase angle of an 
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image matches closely with the position change of 
a motion in the corresponding image(12).  Applying 
magnification factor  , which is simple ratio, to the 
phase difference and set Eulerian term as exp  , multiplication to Eq. (2) results in 
the magnified image as Eq. (3)

∞∞   
   (3)

Therefore, multiplying   to the difference of 
extracted phase angle leads to motion amplitude 
increasing in proportion to the value set.

However, because the phase angle difference does 
not perfectly match the image’s motion information, 
temporal band-pass filtering is conducted by a finite 
impulse response (FIR) filter to filter out uncertain 
data and determine the motion in the frequency domain 
of interest. The filtered phase angle is multiplied 
by the magnification factor   and then merged back 
into the image to provide a partial image with 
magnified motion. By recombining the magnified partial 
images in this approach, the previously undetectable 
motion is significantly magnified. This procedure is 
illustrated in Fig. 1.

The time-domain band-pass filtering procedure 
requires a discrete Fourier transform, which can only 
be applied to finite data and cannot be performed 
by continually accumulating real-time streaming video. 

In this instance, the discrete Fourier transform can be 
replaced by a convolution with a filter coefficient 
for each frame in the time domain, providing frame- 
by-frame processing. In addition, this approach can 
perform online phase-based magnification(10). Due to 
this feature, the image result can be observed in real- 
time by changing the frequency range of the time 
domain filter and the magnification factor  . The 
magnified output of the streaming video in real- 
time can be checked immediately. In addition, whereas 
with the conventional phase-based magnification 
technique, the filter order must be equal to the total 
number of video frames, in online time-domain 
convolution processing, an appropriate value can be 
adjusted during the process.

3. Image Artifact Reduction 

with Autoencoder

The displacement is extracted from the image 
with amplified motion using the phase-based magni-
fication method. The actual displacement value can 
be estimated through the camera-object distance and 
scale calibration by applying the reciprocal of the 
magnification factor. However, for effective dis-
placement extraction, the band-pass filtering frequency 
must be adjusted to an appropriate value, which is 
only possible with the information on the object’s 
dynamic characteristics. When a broad-band frequency 

Fig. 1 Phase-based motion magnification with post-filtering by pre-trained autoencoder model
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is applied to determine dynamic characteristics 
without knowing the particular frequency of motion, 
artifacts appear in the image, limiting the displace-
ment measurement algorithm’s application. Fig. 2(a) 
and Fig. 2(b) shows the results of displacement ex-
traction by the centroid tracking method(13) when 
the frequency of band-pass filtering is applied nar-
rowly to broadly. When the frequency band is not 
specified (Fig. 2(b)), displacement extraction is not 
generally accomplished due to edge artifacts in the 
image.

If these edge artifacts are considered a sort of 
image noise, a method for eliminating the artifacts 
from a single frame can be investigated. As 
mentioned in the introduction, the method employing 
a filter or orthogonal transformation is not appli-

cable to this study because it requires a separate 
parameter optimization procedure. Instead, phase- 
based magnification processing incorporates an 
autoencoder to decrease edge artifacts, as it is well- 
known that an autoencoder is an efficient tool for 
image restoration.

3.1 Autoencoder Models

The denoise autoencoder model(14) is a deep neural 
network (DNN). It consists of fully-connected layers, 
which are accompanied by reprocessing inputs and 
outputs into one-dimensional vectors. When applied 
to real images, the vectorized data becomes 
excessively long and the performance is potentially 
degraded depending on the duplication of learning 
parameters. Therefore, a convolutional autoencoder 
(CAE) was proposed(15), in which fully-connected 
layers were replaced with convolution layers while 
conforming to the encoder-decoder configuration 
appropriate for the 2D image data format.

A convolutional autoencoder (CAE) is like a 
deep neural network because it consists of many 
layers stacked on top of each other. The image data 
compressed by the convolutional layer are restored 
to the original size through a deconvolutional layer. 
While passing through the convolution layer, the 
existing image loses its fine details, which are not 
conveyed to the deconvolution layer. Gradient 
vanishing occurs throughout the backpropagation 
process due to this information loss, making it 
challenging for the model to converge to the globally 
optimal solution. 

(a) Narrow BPF

(b) Broad BPF

Fig. 2 Displacement extraction results from the vibration
image frames with phase-based magnification 
according to band-pass filtering

Fig. 3 Residual encoder-decoder network (RED-net) model
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The residual encoder-decoder network (RED-Net) 
Fig. 3 is a structure in which skip connections are 
inserted between the convolution layer and the 
deconvolution layer to solve this optimal solution 
problem(16). This residual connection structure 
preserves information before the information is lost 
as the dimensionality is reduced in the convolution 
layer, so that the detailed information of the existing 
image can be referred to when reconstructed in the 
deconvolution layer. As a result, it is easier to train 
the optimal solution by mitigating the gradient loss 
in backpropagation.

3.2 Datasets and Model Training

This study used the structural vibration images of 
two steel cantilevers to generate a training dataset. 
The training model receives a magnified image with 
severe artifacts because the band-pass filter is usually 
not applied. However, according to the typical 
application, the model delivers an image with the 
artifacts eliminated. The magnification factor of each 
magnified image frame should operate independently. 

Figure 4 illustrates this procedure. For the diversity 
of training data, the left and right shooting angles 
and the lighting color were set differently. For uni-
formity of input to the learning model, however, the 
image dimensions were set at 640 × 256. The canti-
levers photographed by the two types of cameras 
have the same thickness and width of 0.5 mm and 
15 mm, respectively. However, the length for the 
high-speed camera is 240 mm that represents rela-
tively high natural frequency, and the length for the 
webcam is 480 mm that represents relatively low 
natural frequency. Based on the sampling theory, 
images with modes up to the maximum frequency 
that can be captured at the speed of each recording 
device among the mode frequencies of the two can-
tilevers were taken, and a total of 26 types of vid-
eos were created by applying different magnification 
coefficients. A frame of broad BPF and the re-
spective frame of narrow BPF are combined as sin-
gle pair, and a total of 2600 pairs of images were 
made as a dataset by extracting 100 random pairs 
of images for a pair of video pairs. An autoencoder 

Fig. 4 Datasets (total 2600 image frames) for model training and validation
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model is trained to predict a narrow BPF by receiv-
ing a broad BPF for a pair of data in this dataset. 
It was trained for a total of 500 epochs, and the 
number of training batches was set to 12 to uti-
lize the memory capacity limit of the workstation 
GPU. It was set up to stop training and save the 
last optimal model if the training loss did not im-
prove within 50 epochs during training. 

A simple CAE and a RED-net were employed to 
construct the model used in this study. The RED- 
net utilized in the study contains 20 layers, no sepa-
rate pooling layer, and a skip connection between 
every two layers. By eliminating the skip con-
nection, a simple convolutional autoencoder is 
implemented.

Model training was performed on a workstation 
with an Intel Xeon Silver 4210R CPU and NVIDIA 
RTX3090 GPU. The models were trained with a total 
training epoch of 500 by applying the same dataset 

and learning parameters, and each result was saved 
as a model. The number of training batches was set 
to 12 to utilize up to the limit of the memory 
capacity of the GPU of the workstation. If there is 
no improvement even after 50 epochs during training, 
the training is stopped and the last optimal model is 
saved. The backpropagation loss between the training 
of the two models is also presented in Fig. 5(a) and 
Fig. 5(b).

Model training was performed on a workstation 
with an Intel Xeon Silver 4210R CPU and NVIDIA 
RTX3090 GPU. The models were trained with a total 
training epoch of 500 by applying the same dataset 
and learning parameters, and each result was saved 
as a model. The number of training batches was set 
to 12 to utilize up to the limit of the memory 
capacity of the GPU of the workstation. If there is 
no improvement even after 50 epochs during training, 
the training is stopped and the last optimal model is 

(a) CAE (b) RED-net

Fig. 5 Backpropagation loss in autoencoder models

Fig. 6 Experiment procedure for the comparison of results due to the BPFs, CAE and RED-net models
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saved. The backpropagation loss between the training 
of the two models is also presented in Fig. 5.

4. Results and discussion

The data acquisition and experiment details are 
depicted in Fig. 6; while the 0.5 mm-thick, 15 mm- 
width, 480 mm-length cantilever is weakly excited 
with its mode frequency, video is recorded up to 
500 frames using a 30 fps webcam, and the 
displacement of the cantilever tip was simultaneously 
acquired as a reference signal by LDV. The data 
acquisition occurred twice for excitation at 1.53 Hz 
and 12.2 Hz, respectively 1st and 2nd modes of the 
specimen, satisfying the sampling theorem. While 

broad BPF is set to 0.01 Hz ~ 14.99 Hz for both 
excitation cases, narrow BPF was set 1.0 Hz ~ 2.0 Hz 
and 11.0 Hz ~ 13.0 Hz for the two cases, respectively. 
Two learning models were used as post-filters in 
addition to a broad BPF to reduce image artifacts. 
Even when the band-pass filter was not correctly 
applied to the image acquired by the webcam, the 
vibration displacement was extracted with less noise 
using the autoencoder models. 

Figure 7 shows the obtained displacement com-
pared to the case where band-pass filters are applied. 
As such, in general, the position of the cantilever 
tip cannot be appropriately tracked unless a band-pass 
filter is adequately applied to remove edge artifacts 
from the image. On the other hand, removing the 
noise via the autoencoder model tracks the displace-
ment well.

Table 1 also shows the root-mean-squared (RMS) 
error to the reference displacement for the extracted 
displacement of the magnified image due to the 
applied band-pass filters and the autoencoder models, 
respectively. In the case of the first mode vibration 
displacement, the autoencoder model shows a relatively 
close result to the reference LDV value. In the second 
mode displacement, especially in the RED-net model, 
there is no significant difference from the conven-
tional band-pass filter.

On the other hand, there are cases in which the 
simple CAE cannot track the displacement, although 
RED-net does correctly. This can be quantitatively 
confirmed through the smaller RMS error. The poor 
artifact reduction performance of the model can be 
seen as a failure to converge to the global optimal 

(a) 1st mode displacement

(b) 2nd mode displacement

Fig. 7 Extracted displacement of the 1st and 2nd mode 
response from the magnified images according 
to the band-pass filters and autoencoder models

Table 1 RMS errors to reference LDV displacement 
amplitude (mm) and the relative RMSE ratio
(%) to the case of conventional narrow BPF

Mode Narrow BPF
(1-Hz band)

Broad BPF
(15-Hz band) CAE RED-Net

1st
(1.53 Hz) 0.156 0.231

(148.1 %)
0.097

(62.2 %)
0.083

(53.2 %)

2nd
(12.2 Hz) 0.283 0.283

(100.0 %)
0.304

(107.4 %)
0.257

(90.8 %)
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solution. For example, in Fig. 5, CAE assumes that 
it converges to the local optimal solution because 
learning is stopped. Though the total learning time 
of RED-net is longer than CAE as shown in Table 2, 
the prediction processing time spent on a single 
frame is not different; but the RMS error of the 
result using RED-net is much smaller. Therefore, the 
RED-net model is still beneficial.

Since the proposed learning models can be applied 
to a single image frame, they can also be applied to 
video streaming, such as online phase-based image 
magnification(10), if the computational capability is 
available. Additionally, it is superior, as it does not 
require the additional parameter adjustments necessary 
for a band-pass filter. Consequently, it was confirmed 
that model-based image restoration could be applied 
to image artifacts generated by phase-based magni-
fication using RED-net beyond image noise reduction. 
This study confirmed that the proposed approach is 
only effective in the first- and second-mode of 
vibrations. It is extended to the higher modes of 
vibration and has been demonstrated(17).

5. Conclusion

This study presented a deep learning autoencoder 
model to reduce edge artifacts caused by the 
inappropriate band-pass frequency filter configuration 
in phase-based magnification. The autoencoder model 
reduced the estimation errors when conventional 
band-pass filtering was not optimally applied. For 
learning the autoencoder model, the training data-
sets comprised online phase-based magnification 

images for each magnification factor, size, direction, 
FPS, and frequency. The residual autoencoder and 
the conventional autoencoder neural networks were 
trained using the prepared training dataset. As a 
result, the residual autoencoder model exhibited 
improved edge artifact reduction performance. The 
autoencoder model delivers substantially better results 
than applying broad band-pass filtering. Moreover, 
it can be executed immediately, even if the dynamic 
characteristics of the structure are not identifiable. 
This autoencoder model enables an additional benefit 
to the online phase-based magnification technique.
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