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ABSTRACT

The sound pressure measured at the near field exhibits significant fluctuation depending on the size and 
frequency of the sound source. Therefore, it is necessary to use the sound pressure measured or numerically 
calculated at a sufficient distance from a radiator to estimate the actual sound power of the source. In 
this study, we investigated the appropriate distance for measuring or numerically calculating the 
sound pressure to validly estimate the sound power of a radiator, which depends on the frequency. A 
theoretical estimation of the starting position of the far-field acoustic characteristics for rigid disk 
vibrations was conducted, and the results were numerically compared and reviewed using the Rayleigh 
integral method (RIM) and lumped parameter method (LPM). The analysis using these methods, with modeling 
based on the 1/3 wavelength rule, demonstrated accurate predictions of the near-field acoustic characteristics. 
It was shown that the near sound field could be accurately predicted by modeling and analyzing under the 
condition of the 1/3 wavelength rule using the RIM and LPM. It was found that even when elements 
were modeled at a larger size than the 1/3 wavelength rule, the far-field sound pressure result could 
effectively depict the theoretical far-field sound pressure in the case of the RIM. It was also shown that 
the sound pressure due to the vibration of a flexible circular disk modeled with an element size based on 
the 1/3 wavelength rule was well predicted by both the LPM and RIM.
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요  약

근거리에서 측정된 음압은 음원의 크기와 주파수에 따라서 변동성이 크므로 방사체와의 거리

가 충분히 떨어져서 측정 또는 수치적으로 계산된 음압을 사용해야 방사체의 실제의 음향 파워

를 추정하는데 사용할 수 있다. 본 논문에서는 음향 파워를 추정하는데 필요한 원거리 음압은 

주파수에 따라 어느 정도 거리 이상에서 추정해야 타당한지를 기술하였다. 원판의 강체 진동에 

대한 원거리 음장 특성의 시작 위치를 이론적으로 추정하였고, 이를 Rayleigh integral method
와 lumped parameter method를 사용한 수치적 해와 비교 검토하였다. RIM 뿐만 아니라 LPM을 

이용하여 파장의 1/3 rule 크기로 모델링하여 해석하면 근거리 음장 특성도 정확히 예측할 수 있

음을 나타냈다. 파장의 1/3 rule 보다 큰 크기로 모델링 하여도 원거리 음장에서의 음압 특성은 

RIM의 경우에 이론적인 원거리 음압을 잘 표현할 수 있음을 보였다. 파장의 1/3 rule에 따라 요

소 크기로 모델링한 원형 디스크의 유연체 모드 진동으로 방사된 음압은 LPM과 RIM에서 둘 다 

잘 예측됨을 보였다.

1. Introduction

Indeed, the demand extends beyond analyzing vi-
brations in three-dimensional (3D) structures; it in-
cludes predicting acoustic radiation arising from the 
vibrations of two-dimensional (2D) structures. Anticipating 
sound radiation is necessary for flat structures posi-
tioned on wide panels or thin plate structures within 
arbitrary sections of three-dimensional space. For 
example, acoustic radiation caused by vibration in a 
part of a vehicle door panel, acoustic radiation anal-
ysis from a wall-mounted flat-panel TV speaker in 
a room, etc. can be seen as areas where acoustic 
analysis of two-dimensional structures is required.

Finite element method (FEM) and boundary ele-
ment method (BEM) have been widely used as nu-
merical analysis methods to predict sound pressure 
radiated by vibration of a flat plate placed on an in-
finite rigid baffle. They model the target object to 
be analyzed and the area of interest using elements. 
Once the frequency of interest for analysis is de-
termined, the wavelength corresponding to that fre-
quency is calculated. The size of the largest side of 
elements to be used in modeling must be modeled 
smaller than 1/3 or 1/6 of the wavelength to be an-
alyzed to obtain reliable analysis results. FEM is a 
domain analysis method. To perform 3D acoustic 
analysis, all 3D domain of interest including the 
target object and the surrounding region where the 

sound pressure is to be calculated are modeled using 
3D elements and a numerical solution is obtained. 
If the domain of interest changes, all 3D domain, 
including the target object and the changed domain 
of interest, are remodeled and analyzed at once, so 
many elements and nodes are used, and the 
calculation time can be needed very long. Acoustic 
BEM models only the surface of the analysis object, 
so the number of elements used is relatively small 
compared to FEM, but the system matrix is asym-
metric and dense, so it requires a lot of memory. 
Therefore, it is known that analysis is possible only 
in the mid- and low-frequency range. Meanwhile, in 
BEM, only the values on the surface of the target 
object are analyzed, and the sound pressure in any 
area of interest can be calculated using this 
analysis result. In other words, even if the area 
of interest changes, it is a field analysis method 
that allows re-analysis only in the area of inter-
est rather than recalculating the value on the 
surface of the object from the beginning. Since 
calculations can be made for arbitrary nodes in 
the field of interest, the sound pressure in the 
field of interest can be calculated quickly even if 
the field of interest grows or changes. When per-
forming acoustic analysis based on plate vibration 
on an infinite baffle, the Rayleigh Integral Method 
(RIM), a simplified BEM, can be used(1~3).

Meanwhile, another method for analyzing acoustic 
radiation is the lumped parameter method (LPM)(3~5). 
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LPM models only the surface of the object in the 
same way as BEM, making modeling easy. In addi-
tion, acoustic radiation analysis using thin flat plate 
edges in space are also possible(4), so it can be con-
sidered to be more useful than BEM. BEM can use 
velocity, sound pressure, and specific acoustic im-
pedance boundary conditions, but LPM uses only 
volume velocity boundary conditions as boundary 
conditions. The main purpose of the LPM analysis 
method is known to predict the radiated acoustic 
sound power output of a target object rather than 
predict sound pressure at a short distance, so it is 
mainly interested in acoustic characteristics at a 
long distance(4).

On the other hand, when analyzing the acoustic 
characteristics of a microspeaker mounted on a mo-
bile phone using numerical analysis, do the sound 
pressure characteristics analyzed at a close distance, 
for example, about 0.1 m, show inappropriate results 
because they fluctuate significantly depending on 
the near field characteristics? That is, does the theo-
retically predicted sound pressure match the numeri-
cally calculated sound pressure well in the fluctuating 
near field or the far sound field? In the case of a 
horn loudspeaker, will the results analyzed at 0.1 m 
distance from the horn mouth show different acoustic 
characteristics than the experimentally measured re-
sults? The motivation for this paper can be sum-
marized as follows: (1) When conducting a theoret-
ical analysis of the acoustic radiation characteristics 
of a flat plate placed on a rigid baffle that occurs 
when it vibrates, how much difference is there be-
tween the acoustic properties in the near field and 
the far field? In other words, when the vibration 
frequency of the panel is determined, where can we 
say that the far field begins? It is a critical problem. 
The acoustic power of a radiator can be obtained 
by multiplying the sound pressure value measured 
at a sufficiently far distance from the radiator by 
the area related thereto. In order to accurately pre-
dict the acoustic sound radiation power of a target 
object at a specific frequency, must we use the cal-

culated or actually measured sound pressure at a 
certain distance from the radiating surface to use it 
as data to calculate the realistic acoustic power of 
the object? In conclusion, in order to estimate the 
acoustic power at a specific excitation frequency, at 
least how far away from the radiator should the 
sound pressure be measured or numerically ana-
lyzed? (2) To what extent do the numerical analysis 
results using RIM and LPM differ from the theoret-
ical near field and far field analysis results depend-
ing on the element sizes used in modeling? (3) 
When performing BEM numerical analysis, the size 
of the largest side of elements is applied according 
to the 1/3 rule or 1/6 rule of the wavelength size to 
be analyzed. Even in LPM, how accurate results 
can be obtained according to this rule in analyzing 
near field or far field sound fields? LPM has been 
known to be a technique specialized for sound pow-
er prediction, but can it be considered valid for use 
in sound pressure prediction even in the near field? 
How well can LPM accurately predict sound pres-
sure and can it also be used for near field pre-
diction? In section 2, the acoustic radiation theory 
of circular panel on an infinite baffle plate is brief-
ly described. Additionally, RIM and LPM were also 
described. In section 3, the acoustic radiation analy-
sis process of circular panel was described. In sec-
tion 4, the acoustic analysis results were compared 
and reviewed. In section 5, the limitations and use-
fulness of the method used are described as a 
conclusion.

2. Acoustic radiation by a finite-sized 

plate on an infinite baffle

2.1 Acoustic radiation theory of circular disk

The far field sound pressure generated at a disk 
with a radius, a, vibrates on an infinite rigid baffle 
can be theoretically obtained as followed(6,7). In Fig. 1, 
when the area element   at point ′ vibrates at a 
volume velocity  and considering image source, 
the sound pressure at point  is followed as Eq. (1).
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       (1)

Where,   ,   ′′′
     (2)

In Fig. 1, the distance   between point ′ on the 
disk and point  in space is given by Eq. (3).

 ′ ′sinsin′  (3)

If we consider the far field sound pressure in 
case of 〉〉′, and the far field sound pressure is 
followed as Eq. (4).

farfield    
            ′sinsin′′′′
   sinsin   (4)

For ≈, far field pressure farfield  is expressed like 
as Eq. (5) 

farfield   (5)

When the observation point  is on-axis, the far 
field condition is such that when ′ changes on the 
disk, the variation of   is induced a phase change 

according to the volume velocity  position, re-
sulting in acoustic cancellation at the observer’s 
position. When using the approximation of the ex-
ponent component in Eq. (2), the condition for re-
ducing the effect of acoustic cancellation due to 
phase change is that the variation of   should be 
less than (6). When ′ is at the origin,   be-
comes the minimum value min  , and when ′ is 
on the circumference,   becomes the maximum val-

ue max ≈ and the path dif-
ference must satisfy max min    .

In other words, when the far field on-axis con-
dition is set to   , → like as Eq. (6),

 ≥


 (6)

If it is expressed in terms of frequency like as 
Eq. (7),

 ≤  (7)

Under this condition, which is an exponent term 
of Eq. (2), becomes (2π/λ)(λ/16)=π/8=22.5o, Eq. (5) 
can be said to describe far fields on axis acoustic 
characteristics. Regardless of where ′ is within the 
disk, if Eq. (6) or Eq. (7) is satisfied, the sound 
pressure arriving at point  on the on-axis is almost 
in phase, so sound pressure cancellation does not 
occur. Directivity, the direction characteristic of 
sound pressure, is calculated from Eq. (4) like as Eq. (8).

intensity of point sourceintensity of actual source
      sinsin  (8)

The direction index DI(directivity index) is as 
follows Eq. (9)(6,7).

 log log  (9)Fig. 1 Plane circular piston radiator in an infinite 
baffle
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Since it is    on-axis, it becomes (,0)=1 
and thus (,0)=0 (dB).

The near field sound pressure radiated by the 
source above the axis, the region close to the sound 
source where the far field approximation does not 
apply, is called Fresnel diffraction effects(7). Although 
it is not possible to obtain closed form expressions 
for the near field pressure at arbitrary positions 
radiated by an acoustic source, it is possible to 
obtain the on-axis near field pressure radiated by a 
flat circular piston on an infinite baffle. The sound 
pressure caused by the disk on the baffle can be 
calculated using Eq. (1) is obtained by integrating 
with respect to the disk. Follow as Fig. 2, here, 

 ′  and   ′′, and the exact on-axis 
solution exact can be expressed like as Eq. (10) ~
Eq. (11)(6).

exact   ′′ ′ ′
          (10)

          
         sin   (11)

The condition for the sound pressure to be the 

maximum value in Eq. (11) is     

 is followed like as Eq. (12)(7).

   , m=1, 2, … (12)

The conditions under which the sound pressure 

will be minimum is   and given 

in Eq. (13).

   , m=1, 2, … (13)

The far field sound pressure is that if in Eq. (11), 

〉〉 and are given  ≈   and 

sin≈ becomes → and 〉〉 , then, the ap-

proximate sound pressure in the far field is Eq. (14).

farfield    (14)

The ratio [%] and error of sound pressure to far 
field are calculated from Eq. (15) and Eq. (16).

Ratio  farexact ×
      sin       ×

(15)

Error farexact far × (16)

Assuming that a disk with a radius of 0.1 m vi-
brates as a rigid body on an infinite baffle, the 
sound waves radiating from this disk below 545.9 Hz 
can be viewed as spherical waves. If we apply arbi-
trarily      in the far field sound pres-
sure condition 〉〉, we get 〉〉. 
Meanwhile, using Eq. (16), it can be seen that error 
between the exact axis response exact and far field 
sound pressure farfield  is within 5 % is corresponding 
to ≥ . Assume three cases in which a rigid 
disk with a radius of 0.1 m vibrates at 1715 Hz, Fig. 2 Acoustic interference due to Fresnel effects
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5145 Hz, and 8575 Hz, respectively. At this time, it 
corresponds to  = λ/2, 3λ/2, 5λ/2 for each fre-
quency, Fresnel diffraction effects. The distance that 
can be considered as a far field when the disk vi-
brates is calculated based on Eq. (6) and  = 2λ =
0.4 m,  = 18λ = 1.2 m,  = 50λ = 2.0 m can be 
considered as the far field sound field region(6). 
However, if the region where the difference between 
the exact sound pres-sure and the far field approx-
imate sound pressure is within 5 % is called the far 
field region(or area), it represents 0.26 m, 0.48 m, and 
0.75 m, respectively. Meanwhile, the peak value po-
sitions can be calculated by using Eq. (12) when the 
exact sound pressure fluctuates according to the 
excitation frequency of the disk. This is shown in 
Fig. 3 and is summarized in Table 1. In Table 1, the 
meanings of 0, 0.53, and 2.4 in the 3rd column in 
case 3 are shown in Fig. 3. This means that the 
peak of the solid line (8575 Hz), which is the exact 
sound pressure exact of case 3, is located at  = 0, 
0.53 and 2.4. Looking at the 4th column of the 4th 
row of Table 1, when a circular disk vibrates on the 
baffle at a frequency of 8575 Hz and radiates 
sound, the distance vertically from the center of the 
baffle can be called the start position of the far 

field sound region. When predicting sound pressure 
in the far field sound field, it was shown that, based 
on Eq. (16), within 5 % error, it is possible to use 
the far field sound pressure approximation farfield  in-
stead of exact to predict sound pressure level in 
case of  > = 7.5 from farther away from the cir-
cular panel. In other words, at a location 7.5 times 
larger than the radius of the circular disk, the error 
in sound pressure is within 5 % even if the sound 
pressure is predicted using the far field sound pres-
sure approximation farfield .

When changing the radius of the circular disk 
from 0.1 m to 0.05 m, it can be calculated that the 
sound waves radiated when the disk rigidly vibrates 
at frequencies of 1715 Hz, 5145 Hz, and 8575 Hz 
show at the far field region start of 0.1 m, 0.3 m, 
and 0.5 m based on Eq. (6), respectively. According 
to Eq. (16), it can be calculated that the radiated 
sound waves start at the far field region 0.11 m, 
0.15 m, and 0.21 m. In terms of , it is 2.2, 3.0, 
and 4.2, respectively. In summary, as the frequency 
of the circular disk vibrating as a rigid body in-
creases, the starting position of the far field region 
moves away from the center of the disk. In addi-
tion, it can be seen that as the diameter of the cir-
cular disk becomes smaller, the starting position of 
the far field region at the same frequency becomes 
closer to the disk. When measuring the sound pres-
sure in a free sound field, the total sound power 
can be accurately measured by surrounding the ra-
diating object and measuring the intensity at a loca-
tion where the far field sound field characteristic, 
where the sound pressure decreases in inverse pro-

Table 1 Comparison of far field region start position 
between Eq. (6) and Eq. (16) for circular disk 
(radius a = 0.1 m) on infinite rigid baffle 

No. Frequency 
[Hz]

,
Eq. (12)

farfield
Eq. (6) Eq. (16),

Err < = 5 %
1 1715 0 4 2.6

2 5145 0, 1.33, 1.5 12 4.8

3 8575 0, 0.53, 2.4 20 7.5

Fig. 3 Comparison of on-axis pressure curves between exact  and farfield  for circular disk(radius =
0.1 m) on rigid baffle, vibrating frequency; exact : 1715 Hz(dash-dot), 5145 Hz(dashed) and 
8575 Hz(solid), farfield : 1715 Hz(triangle), 5145 Hz 
(diamond) and 8575 Hz(x)
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portion to the distance, appears. However, in the 
near field region, which is inside the far field re-
gion, an oscillate phenomenon of sound pressure 
occurs due to sound interference, Fresnel diffraction 
effects, making it impossible to properly measure 
the actual sound power radiated by the object. In 
LEAP® software(8), as shown in Fig. 4, the methodology 
of small source arrays is used to model circular and 
rectangular loudspeaker as small source arrays to 
analyze the characteristics in the near field. For 
example, when analyzing a woofer with diameter 15 cm, 
6 small circular disks are used in the diameter direction, 
so the radius of the small disk is a = 0.5 inch = 0.0127 m. 
When the upper frequency limit of interest for the 
woofer’s radiated sound pressure is 3 kHz according 
to Eq. (16). The closest distance at which the far 
field approximation farfield  can be used is 0.03 m, 
which indicates that reliable results can be obtained 
even if the near field sound pressure at 3 cm or 
more is obtained by the far field sound pressure 
approximation farfield . 

2.2 Brief description of RIM

Kirchhoff-Helmholtz Integral Theorem is as fol-
lowed Eq. (17) and Eq. (18)(2).

  ∇∇⋅  (17)

  ∇
      ∇    ⋅ (18)

Applying the Rayleigh Integral Method on the 
baffle surface follow as Eq. (19),

   (19)

where,     ∓ 
The sound pressure is as follows Eq. (20).

  (20)

When calculating integral equations, there are 
simple source method and collocation method(9). 
Direct acoustic BEM can analyze the interior or ex-
terior of a closed space. In the case of an object 
that is open on one side, the interior acoustic analy-
sis is directly analyzed using acoustic internal 
BEM, and physical quantities are calculated at the 
boundary between the interior space and the open 
space. Using this data, we can interpret the acoustic 
radiation from an open space interface wall as the 
sound radiating from the boundary surface. In this 
paper, acoustic analysis was performed by using the 
collocation method proposed by Kirkup and devel-
oping a modified program for user convenience by 
linking RIM3(2), a program provided by Kirkup, 
with the GiD® program(1~3,9,10).

2.3 LPM

Koopmann and Fahnline presented LPM, a method 
to easily analyze acoustic radiation in open spaces. 
Koopmann et al. selected acoustic power, a scalar 
quantity, as a physical quantity that can characterize 
acoustic radiation as a design parameter for noise 
reduction design of structures(4). While BEM uses 
the element velocity boundary condition, LPM adopts 
the surface volume velocity as the velocity boundary 
condition in the Kirchhoff-Helmholtz integral equa-
tion and converts it to an average form. In this 
method, mathematical difficulties such as non-
uniqueness that arise in acoustic BEM are elimi-
nated by analyzing the external sound field by cre-

Fig. 4 Schematic diagram of circular and rectangular 
shape loudspeaker modeling by LEAP software
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ating equivalent volume velocity fields using a 
combination of simple, dipole, and tripole sources 
according to boundary conditions(4). In other words, 
BEM uses velocity boundary conditions at elements, 
but LPM uses volume velocities at elements, sug-
gesting a method to avoid non-uniqueness and 
non-existence problems that occur in BEM(4). In 
addition, the analysis time is very short compared 
to the BEM method, so it can be used for external 
acoustic radiation analysis instead of BEM(9,12). LPM 
is briefly described as follows. In one element, the 
sound pressure caused by the simple source and the 
dipole source is expressed as Eq. (21)(4).

x xq ∇xq⋅n q  q (21)

Where, xq  
Using Euler’s equation, the velocity in the direc-

tion at the field point x is given by Eq. (22).

xjkc N  

∇xqs ∇xq⋅n q  q⋅n 
(22)

The volume velocity across elements of the boun-
dary surface is calculated, that is, Eq. (22) is in-
tegrated over the element surface to be analyzed. 
We can obtain an expression for the volume veloc-
ity as in Eq. (23).

x xx
     ∇xq (23)

     ∇xq⋅n qq⋅nx 
After obtaining the coefficients  using the vol-

ume velocity boundary conditions using Eq. (23), the 
sound pressure at any field point can be calculated 
using Eq. (24). 

x xq xq⋅n q  q
(24)

Here, the constants  and  are known con-
stant values used to represent simple, dipole, or tri-
pole sources of acoustic radiation from each element 
of the structure. Table 2 shows how the source 
shape is determined according to the characteristics 
of each surface element and the constants  and  are determined accordingly(4). If the element is 
on the baffle, it is considered a simple source. If 
the element surrounds a finite volume, it is 
assumed to be a tripole source. In other cases, if 
the element is neither on the baffle nor surrounding 
a finite volume, it is assumed to be a dipole 
source(3~5,11,12).

3. Acoustic radiation analysis process

The object to be analyzed is a circular disk plate 
with a diameter of 0.1 m placed on an infinite rigid 
baffle. The thickness of the plate is 0.005 m, Young’s 
modulus is 105 GPa, Poisson’ ratio is 0.3, and density 
is 8500 kg/m3. For acoustic analysis, a program was 
written and used to analyze in conjunction with the 
GiD® system, a commercial pre-post program.

3.1 Acoustic radiation analysis using RIM

The program presented by Kirkup was slightly 
modified(2), and a program linked to the GiD® soft-
ware was programmed and used to make it easier 
for users to use. A program system consisting of 
batch files was used to enable analysis of rigid 
body vibration using RIM.

Table 2 Constants   and   according to surface elements

Case Source type  
1 Simple 1 0

2 Dipole 0 j/k

3 Tripole 1 j/k
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(1) Acoustic radiation analysis for rigid body vi-
bration

RIM analysis was performed after specifying the 
velocities of the corresponding elements as velocity 
boundary conditions for the flat plate that was the 
subject of analysis. When RIM analysis is per-
formed by specifying the desired analysis frequencies 
and field points(not meshes), the sound pressure 
and velocity at each frequency and each element 
are saved in a file, and at the same time, the sound 
pressure at the field points is calculated. To calculate 
the sound pressure pattern in a mesh composed of 
arbitrary field points, a new field point mesh model 
was created and the post program batch file 
programmed was used to calculate the sound pres-
sure pattern in the field point mesh. In this case, 
rather than re-running the RIM program from the 
beginning, we used the sound pressure and velocity 
data files of the surface elements at each frequency 
for the original analysis target model, a circular 
disk, that had been initially calculated and saved as 
a file in advance. Based on these data, the sound 
pressure at field point meshes was calculated for 
new field mesh models, so analysis results were ob-
tained in a short time.

(2) Acoustic radiation analysis of flexible body 
vibration

The acoustic radiation analysis process according 
to flexible body vibration was carried out in the 
following order. Step 1: After selecting the flat plate 
to be analyzed on an infinite rigid baffle, velocity 
boundary conditions and analysis frequency range 
were specified. The modeling process was performed 
and an input file for FEM analysis was created and 
saved. Step 2: The previously created input file was 
read using a commercial FEM program. Vibration 
analysis was performed by inputting boundary con-
ditions and material properties for vibration analysis 
in FEM. It was analyzed in the time domain using 
a boundary condition where the edges of the circu-
lar disk were fixed and a condition when a random 

force of 1 N was applied to the center of the 
circular disk. The random waveform was filtered 
using a 10 kHz low-pass filter to create a random 
waveform with an upper limit frequency of 10
kHz, and this was used as the 1 N random force. 
The acoustic elements used in the acoustic analysis 
were three-node triangular elements, and for 
vibration, six-node triangular elements were used 
for vibration analysis. Fig. 5 shows the vibration 
pattern of the instantaneous velocity magnitude at 
which a circular disk vibrates depending on the 
applied force.

After vibration analysis, file written the velocity 
data at each node and file written the node coor-
dinates were saved. Step 3: The time domain veloc-
ity data at each node was converted to frequency 
domain data using fast Fourier transform. The anal-
ysis time step was Δt = 97.65625 μs and the analysis 
time was 0.1 s. Therefore, the number of cases that 
can be analyzed ranges from 10 Hz to 5120 Hz, and 
vibration analysis results for 512 cases of harmonic 
excitation were obtained at 10 Hz intervals. It was 
programmed that leakage error was reduced by 
adopting a Hanning window when performing fft in 

Fig. 5 Vibration analysis on circular disk(radius = 0.1 m),
fixed boundary condition, 1 N random force 
on center point, Δt = 9.765625E-5 s, T = 0.1 s
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case more data than 0.1 sec was used. Step 4: Using 
complex velocity data in the frequency domain at 
each node, the average velocity in normal direction 
at the centroid of the three-node triangular element, 
which is an acoustic element, was calculated and 
saved as a file. Step 5: Using the RIM program 
presented by Kirkup, which has been modified to 
have GUI (graphic user interface) characteristics so 
that users can use it conveniently, use velocity 
boundary conditions on the centroids of each ele-
ment at each frequency specified in step 1. Then, 
RIM analysis was performed. As a result of the 
analysis, the sound pressure pattern on the surface 
to be analyzed and the sound pressure at the field 
points(not meshes) were calculated. In addition, in 
order to calculate sound pressure patterns for sub-
sequent field point meshes, data related to sound 
pressure on the surface to be analyzed were saved 
in a file in advance. To calculate the sound pres-
sure pattern in the new field point meshes, the field 
point meshes were modeled. In order to analyze 
acoustic characteristics in the new field point mesh, 
a program was written and used for post analysis. 
By executing this batch file, we analyzed the acous-
tic pattern in the field point mesh and plotted the 
results in GiD®.

3.2 Acoustic radiation analysis using LPM

The program used in this section was slightly 
modified from the program presented by Koopmann(4), 
and was programmed in conjunction with GiD®, a 
commercial program, to make it easier for users to use 
using a GUI. A batch file was created and used to en-
able analysis using LPM for rigid body vibration 
in a process similar to the RIM analysis process. For 
the flexible body vibration analysis, another batch 
file was created, and acoustic analysis was performed 
using LPM using these batch files(5). We programmed 
a post program, batch file that can calculate and plot 
the LPM analysis results on field point meshes, and 
using this, we were able to obtain sound pressure 
pattern results on field point meshes.

(1) Acoustic radiation analysis for rigid body 
vibration

Acoustic radiation analysis due to rigid body 
vibration was performed by creating a batch file 
similar to the RIM analysis. LPM analysis was per-
formed after specifying the velocities of the corre-
sponding elements as the velocity boundary con-
ditions of the plate that was the subject of analysis. 
By specifying arbitrary desired analysis frequencies 
and field points, the sound pressure and velocity at 
each element at each frequency were stored in a 
file, and at the same time, the sound pressure at the 
field points was calculated. The difference from the 
RIM program is that RIM uses velocity boundary 
conditions, while LPM uses the volume velocity of 
elements as the boundary condition(4). Step 1: Model 
the LPM analysis target with GiD® and specify the 
velocity at the element as the velocity boundary 
condition. If an element is on an infinite rigid baffle, 
a boundary condition was specified at the modeling 
stage to determine whether it was an element sur-
rounding a finite volume, or whether it was an ele-
ment that was not on an infinite baffle and did not 
surround a finite volume. Step 2: Run the preceding 
program of the LPM program to calculate the vol-
ume velocity of each element using the velocity da-
ta from each already specified element and save it 
as a file. Step 3: Acoustic analysis was performed 
by running the LPM program. At this time, sound 
pressure at designated field points was also calculated. 
The surface data of each element at each frequency 
and the data required for calculations in other field 
point meshes were saved as a file.

(2) Acoustic radiation analysis for flexible body 
vibration

The analysis was performed in a process similar 
to the RIM analysis process. A new field point mesh 
model was created and a batch file for post analysis 
was created and used. Acoustic patterns in field point 
meshes could be calculated. In this case, rather than 
re-running the LPM program from the beginning, 
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the file containing the sound pressure and velocity 
data of the surface elements at each frequency, which 
had been saved in advance after initially calculating 
it, was read and used for subsequent calculations.

4. Acoustic radiation simulation and 

discussions

4.1 Comparison of acoustic radiation according 

to rigid body vibration of a disk

It was assumed that a circular disk with a diame-
ter of 0.1 m was placed on an infinite baffle. The 
sound pressure radiated when a rigid body vibrates 
at 1 m/s was compared with the near field sound 
pressure, the far field sound pressure, and the re-
sults of the RIM. The sound pressure was calcu-
lated at 100 field points locations at 0.01 m inter-
vals at  = 0.01 m in the normal direction from the 
center of the circular disk. The analyzed frequencies 
were 1715 Hz and 8575 Hz. Analysis was performed 
for four cases depending on the size of the elements 
used. Looking at Fig. 6, the first column showed the 
sound pressure when a disk with radius a = 0.1 m 
was vibrating at 1715 Hz, 1 m/s, and moving away 
from the center of the disk in the normal direction. 
Comparing the results analyzed by and RIM in all 
four cases described in Table 3 (Fig. 6(a)), it was 

shown that the error was within 5 % in all four cas-
es compared to exact. Fig. 6(b), the second column 
of Fig. 6, compares the radiated sound pressure cal-
culated by RIM, exact and farfield  when the disk 
vibrates at a frequency of 8575 Hz. The first figure 
showed case 1 in Table 3, which was the result of 
modeling a circular panel with 16 elements and an-
alyzing it with RIM. The RIM results showed an 
error of up to 114.14 % when compared to exact. A 
dip phenomenon in sound pressure occurred near  = 1 ( = 0.1 m), and the maximum error occurred 
at this point. However, overall, the RIM analysis 
results were in good agreements with the exact 
pressure exact. Case 1 represents a desirable fre-
quency limit of up to 583 Hz if the 1/6 rule of the 
wavelength is followed, and if the 1/3 rule is fol-
lowed, the upper frequency limit that can be in-
terpreted is up to 1166 Hz. However, even when the 
on-axis sound pressure was 8575 Hz, the RIM analysis 
results showed good agreement with the exact solution 
when  is greater than 1. As the error decreased 
as the element size decreased, RIM passed the con-
vergence test. 

Figure 7 showed the results calculated by LPM. 
The first column in Fig. 7 is shown in Fig. 7(a), 
which is the 1715 Hz case. Cases 1 and 2 in Table 3 
correspond to the first and second figures above, 
and the maximum error between the LPM analysis 
result and the exact solution was about 6 %. The lo-
cation where the maximum error occurred was 0.01 m 
in front of the circular disk. The second column, 
Fig. 7(b) is the result of comparing the sound pres-
sure radiated from a disk vibrating at 8575 Hz. 
Unlike the RIM analysis results, the LPM analysis 
showed large errors. It was shown that errors in the 
near field can be greatly reduced only when a cir-
cular disk is modeled with an element size that sat-
isfies the 1/3 rule. As the error decreased as the el-
ement size decreased, LPM passed the convergence 
test. Table 3 showed the errors of LPM compared 
to RIM in four modeling cases. It was found that at 
least the elements must be modeled using the 1/3 

Table 3 Comparison of max(Err%) of beam pattern 
between RIM and LPM in case of circular 
disk(radius = 0.1 m) on rigid baffle corresponding 
to three frequencies, 1715 Hz, 3430 Hz, 8575 Hz 

# Dmax, 
[m]

fmax , 
[Hz] max(Err%)

λ/3 rule 1715
[Hz]

3430
[Hz]

8575
[Hz]

1 0.0981 1166 14.3 43.6 64.6

2 0.0665 1718 5.5 14.4 72.6

3 0.0290 3924 0.7 0.9 26.1

4 0.0183 6258 0.2 0.4 3.4

*1) Dmax  means largest side length of elements
*2) max(Err%) means max(|(LPM-RIM)/RIM|) × 100
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(a) 1715 Hz, a = λ/2 (b) 8575 Hz, a = 5λ/2

Fig. 6 Comparison of exact , farfield  and Pressure by RIM, circular disk(radius a = 0.1 m) on infinite baffle, 
max(Err%) = max(|(RIM-exact)/exact |) × 100, rigid body velocity(1 m/s) B.C., range = 0.01 m ~ 1 m, in-
terval = 0.01 m
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(a) 1715 Hz, a = λ/2 (b) 8575 Hz, a = 5λ/2

Fig. 7 Comparison of exact , farfield  and Pressure by LPM, circular disk(radius a = 0.1 m) on infinite baffle, max 
(Err%) = max(|(RIM-exact)/exact |) × 100, rigid body velocity(1 m/s) boundary condition, range = 0.01 m ~ 1 m, 
interval = 0.01 m
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rule to ensure that the error in the near field is 
within about 5 %.

Figure 8 compares the direction index , which 
is the beam pattern of far field sound pressure farfield , LPM and RIM, for case 2 in Table 3. In case 2, 
according to the 1/3 wavelength rule, up to 1718 Hz 
is the upper frequency limit for reliable analysis. In 
the case of RIM, it was shown to match well with 
the beam pattern of far field sound pressure even at 
3430 Hz and 8575 Hz, which are frequencies 
exceeding the upper analysis limit frequency. However, 
in the case of LPM analysis, in the case of 3430 Hz 
(Fig. 8(a)), a large error occurred above 40o based 
on the axis, and in the case of 8575 Hz, a large error 
occurred above 30o. When the size of the element 
was larger than the 1/3 wavelength rule, the beam 
pattern analyzed by LPM was inaccurate. On the 
other hand, the RIM method showed that the beam 
pattern matched well with the theoretical value even 
though it was modeled with elements larger than 

1/3 wavelength rule.
Figure 9 shows the beam pattern for case 3 in Table

3. According to the 1/3 wavelength rule, the upper 
frequency limit for analysis was up to 3924 Hz. In 
Fig. 9(a), both LPM and RIM showed that the beam 
pattern matched well with the theoretical value. In 
the case of 8575 Hz, Fig. 9(b), which exceeds the 
upper analysis limit frequency, the RIM method 
showed better agreement with the theoretical beam 
pattern than that obtained by the LPM method.

4.2 Comparison of acoustic radiation according 

to the flexible vibration of the disk

The sound pressure radiated when a circular disk 
placed on an infinite rigid baffle vibrates under a 
random force of 1 N at the center with the edge 
fixed was analyzed using RIM and LPM methods. 
Fig. 10 is for case 4 in Table 3 According to the 
1/3 wavelength rule, the upper analysis limit fre-
quency was 6258 Hz. When excited at 3430 Hz, the 

(a) 3430 Hz

(b) 8575 Hz

Fig. 8 Comparion of beam pattern between RIM and 
LPM and farfield  in case of circular disk for 
case 2, 0° means z-axis, rigid body vibration, 
at radius = 1 m

(a) 3430 Hz

(b) 8575 Hz

Fig. 9 Comparion of beam pattern between RIM and 
LPM and farfield  in case of circular disk for 
case 3, 0° means z-axis, rigid body vibration, 
estimated at radius = 1 m from circular disk center
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maximum error in sound pressure as LPM com-
pared to  RIM was 2.7 %. Since almost identical re-
sults were obtained with the LPM and RIM analysis 
methods, both analysis methods could be said to be 
useful in the case of a circular disk placed on a 
baffle surface.

Figure 11 shows the result of calculating the beam 
pattern in a circular disk vibrating at 3430 Hz using 
RIM and LPM, and the maximum error of LPM 
compared to RIM was 15.7 % around 60o offset on 

the axis. The reason why the error appeared larger 
than it appeared was around the dip, where the lev-
el of sound pressure was very small, so even a 
small difference in sound pressure level resulted in 
a large error.

Figure 12 compares the sound pressure pattern on 
the surface of a hemisphere (radius 1 m, center, 0,0,0) 
due to the radiated sound generated from the circular 
disk modeled as case 4 in Table 3. The maximum 
sound pressure difference between RIM and LPM 
was 0.19 dB. It was shown that almost the same 
results can be obtained using RIM and LPM, which 
used volume velocity boundary conditions.

5. Conclusion

The sound pressures on the axis normal to the 
center of the circular disk, which are generated 

Fig. 10 Comparison of Pressure between RIM and LPM,
circular disk(radius a = 0.1 m) on infinite baffle,
max(Err%) = max(|(LPM-RIM)/RIM|) × 100 =  
2.7 %, case 4, at 3430 Hz, flexible random 
vibration excited on circular disk center by 1 N
force, range = 0.01 m ~ 1 m, interval = 0.01 m

Fig. 11 Comparison of Pressure beam pattern between 
RIM and LPM, circular disk(radius a = 0.1 m)
on infinite baffle, max(Err%) = max(|(LPM-RIM)/
RIM|) × 100 = 15.7 % at 60°, case 4, at 3430 Hz, 
flexible random vibration excited by 1 N
random force at center of circular disk, fixed 
boundary condition.

(a) RIM 

(b) LPM

Fig. 12 Comparion of field mesh surface pressure 
(hemisphere, center: 0, 0, 0, radius = 1 m) in
case of circular disk radiation, case 4, 3430 Hz,
flexible vibration excited at circular disk 
(radius = 0.1 m) center by 1 N random force.
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when the circular disk lies on the surface of the 
rigid baffle and the circular disk vibrated as a rigid 
body, are calculated. (1) Using exact, which is the 
theoretical sound pressure prediction result on the 
axis, and farfield , which is the far field sound pres-
sure approximation, it was shown that the location 
where the far field sound field characteristics start 
can be theoretically predicted depending on the size 
of the circular disk. (2) It was found that the start-
ing position of the far field sound region moves 
further away from the center of the disk as the fre-
quency increases. (3) It was also shown that when 
the size of the rigid radiator source decreases, the 
starting position of the far field sound field begins 
closer to the center of the disk. (4) The sound pres-
sure prediction results on the axis showed that the 
RIM case was closer to exact better than the LPM. 
When a circular disk with a radius of 0.1 m was 
modeled as an element satisfying the 1/3 wave-
length rule, the results of RIM and LPM analysis 
showed that the error with was within 0.5 % even 
in the near field with  = 0.01. Therefore, it was 
found that near field analysis was possible to pre-
dict using LPM and RIM analysis. (5) The acoustic 
beam pattern at a far field showed that RIM was 
more consistent with the far field sound pressure 
approximation farfield , theoretical value than LPM 
when using large elements that did not satisfy the 
1/3 wavelength rule. Therefore, it was found that 
RIM can be a more efficient analysis method than 
LPM when calculating total sound power rather 
than sound pressure. However, when elements sat-
isfying the 1/3 wavelength rule were used, the LPM 
and RIM analysis results were almost identical 
ones. (6) The acoustic radiation generated when a 
circular disk placed on a baffle vibrates as a flexi-
ble body was analyzed using LPM and RIM. As a 
result of the analysis at 3430 Hz, when modeled 
with element sizes that follows the 1/3 wavelength 
rule, the position where the maximum error be-
tween the two methods occurred for the sound pres-
sure on the axis was  = 0.01, which was 1 % of 

the radius of the circular disk. It occurred in the 
maximum error size was 2.7 %, indicating very good 
agreements between the LPM and RIM results. (7) 
Discussing on the analysis results using field point 
meshes, a hemisphere with a radius of 1 m, the 
sound pressure radiated from a circular disk at 
hemisphere center with element sizes that satisfies 
the 1/3 wavelength rule showed similar patterns on 
LPM and RIM results. The maximum difference in 
maximum sound pressure was shown to be less than 
0.2 dB. Therefore, it was found that by modeling 
with elements that follow the 1/3 wavelength rule, 
the analysis of acoustic radiation caused by flexible 
vibration can be accurately predicted at near and far 
field using either LPM or RIM. (8) When predicting 
sound power by measuring or numerically calculating 
the sound pressure for a specific frequency, the sound 
pressure must be obtained at a distance greater than 
or equal to the distance where the far field of the 
radiator begins. The start position of the far-field 
sound field according to frequency is described. 
(9) The LPM was also shown to be valid for 
predicting near field and far field sound pressure 
if used to follow the 1/3 wavelength rule. (10) 
As the error decreased as the element size 
decreased, it showed that RIM and LPM passed 
the convergence test.
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